Machine Learning, Part 1

Einführung in die Informationsverarbeitung

Nils Reiter

November 2, 2023

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data
- It's all around us
- Stock market transactions
- Search engines
- Surveillance
- Data-driven research \& science

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data
- It's all around us
- Stock market transactions
- Search engines
- Surveillance
- Data-driven research \& science
- ...
- Why is it interesting for text analysis?
- Big data analyses
- Automatic prediction of phenomena
- Canonisation, Euro-centrism
- Statements about 1000 texts more convincing than abt 10
- Insights into data
- By inspecting features and making error analysis

Two Parts

Prediction Model
 How do we make predictions on data instances?
 (e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data?
(e.g. how do we create rules for assigning a part of speech tag for a word?)

Two Parts

Prediction Model

How do we make predictions on data instances?
(e.g., how do we assign a part of speech tag for a word?)

Learning Algorithm

How do we create a prediction model, given annotated data? (e.g. how do we create rules for assigning a part of speech tag for a word?)

Classification

- Assigning classes to objects/instances/items

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech
- Texts \rightarrow genres

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech
- Texts \rightarrow genres
- Portrait photos \rightarrow name of depicted person

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech
- Texts \rightarrow genres
- Portrait photos \rightarrow name of depicted person

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech
- Texts \rightarrow genres
- Portrait photos \rightarrow name of depicted person
- Prediction model: Responsible for the classification

Classification

- Assigning classes to objects/instances/items
- Words \rightarrow parts of speech
- Texts \rightarrow genres
- Portrait photos \rightarrow name of depicted person
- Prediction model: Responsible for the classification
- Many different models/algorithms available (all with variants):
- Decision trees
- Support vector machines
- Naïve bayes
- Neural networks
- Bayesian networks

Classification

Target classes

Classes: A finite set of categories

Examples

- Parts of speech: Noun, verb, adjective, ...
- E.g., STTS tagset
- Argument analysis: Pro or con some claim
- Smart home: Is a person at home or not based on sensor input
- Genres: Abenteuerroman, Bildungsroman, Kriminalroman, ...

A But: Novels may fall in multiple classes

Classification

Target classes

Classes: A finite set of categories

Examples

- Parts of speech: Noun, verb, adjective, ...
- E.g., STTS tagset
- Argument analysis: Pro or con some claim
- Smart home: Is a person at home or not based on sensor input
- Genres: Abenteuerroman, Bildungsroman, Kriminalroman, ...

A But: Novels may fall in multiple classes
Important first step: Clearly identify classes and problem properties

Decision Trees

Prediction Model - Toy Example

- What are the instances?
- Situations we are in (this is not really automatisable)

Decision Trees

Prediction Model - Toy Example

- What are the instances?
- Situations we are in (this is not really automatisable)
- What are the features?
- Consciousness
- Clothing situation
- Promises made
- Whether we are driving

Decision Trees

Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
- Number of branches $=$ number of possible values

Decision Trees

Prediction Model

- Each non-leaf node in the tree represents one feature
- Each leaf node represents a class label
- Each branch at this node represents one possible feature value
- Number of branches $=$ number of possible values
- Make a prediction for x :

1. Start at root node
2. If it's a leaf node

- assign the class label

3. Else

- Check node which feature is to be tested $\left(f_{i}\right)$
- Extract $f_{i}(x)$
- Follow corresponding branch
- Go to 2

Decision Trees

Learning Algorithm (Quinlan, 1986)

- Core idea: The tree represents splits of the training data

1. Start with the full data set $D_{\text {train }}$ as D
2. If D only contains members of a single class:

- Done.

3. Else:

- Select a feature f_{i}
- Extract feature values of all instances in D
- Split the data set according to $f_{i}: D=D_{v} \cup D_{w} \cup D_{u} \ldots$
- Go back to 2

Decision Trees

Learning Algorithm (Quinlan, 1986)

- Core idea: The tree represents splits of the training data

1. Start with the full data set $D_{\text {train }}$ as D
2. If D only contains members of a single class:

- Done.

3. Else:

- Select a feature f_{i}
- Extract feature values of all instances in D
- Split the data set according to $f_{i}: D=D_{v} \cup D_{w} \cup D_{u} \ldots$
- Go back to 2
- Remaining question: How to select features?

Decision Trees

Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set

Decision Trees

Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase

- No increase
$\{\boldsymbol{\checkmark} \boldsymbol{\checkmark} \boldsymbol{V} \boldsymbol{x}\}=\{\boldsymbol{\checkmark}\} \cup\{\boldsymbol{\checkmark} \boldsymbol{\checkmark} \mathbf{x}\}$

Decision Trees

Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase
$\{\boldsymbol{V} \boldsymbol{V} \mathbf{x}\}=\{\boldsymbol{x}\} \cup\{\boldsymbol{\checkmark}$ レV $\} \leftarrow$ better split!
- No increase
$\{\boldsymbol{\checkmark} \boldsymbol{\checkmark} \boldsymbol{V} \boldsymbol{x}\}=\{\boldsymbol{\checkmark}\} \cup\{\boldsymbol{\checkmark} \boldsymbol{\checkmark} \boldsymbol{x}\}$
- Homogeneity: Entropy/information

Decision Trees

Feature Selection

- What is a good feature?
- One that maximizes homogeneity in the split data set
- "Homogeneity"
- Increase
$\{\boldsymbol{V} \boldsymbol{V} \mathbf{x}\}=\{\boldsymbol{x}\} \cup\{\boldsymbol{\checkmark}$ レV $\} \leftarrow$ better split!
- No increase
$\{\boldsymbol{\checkmark} \mathbf{V} \mathbf{V} \boldsymbol{x}\}=\{\boldsymbol{\checkmark}\} \cup\{\boldsymbol{\checkmark} \mathbf{V} \mathbf{x}\}$
- Homogeneity: Entropy/information
- Rule: Always select the feature with the highest information gain (IG)
- (= the highest reduction in entropy $=$ the highest increase in homogeneity)

Entropy

Shannon (1948)

- A metric for the uncertainty in a random variable

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaaa" - only one symbol, very certain

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$
- "bbabbababbbaba" - two symbols, unevenly distributed, 33:66

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$
- "bbabbababbbaba" - two symbols, unevenly distributed, 33:66
- $H=-\left(0.333 \log _{2} 0.333+0.666 \log _{2} 0.666\right)=0.91$

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$
- "bbabbababbbaba" - two symbols, unevenly distributed, 33:66
- $H=-\left(0.333 \log _{2} 0.333+0.666 \log _{2} 0.666\right)=0.91$
- "nmkfjigeoahlpdcb" - 16 symbols, very uncertain

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$
- "bbabbababbbaba" - two symbols, unevenly distributed, 33:66
- $H=-\left(0.333 \log _{2} 0.333+0.666 \log _{2} 0.666\right)=0.91$
- "nmkfjigeoahlpdcb" - 16 symbols, very uncertain
- $H=-16 \times-0.25=4$

Entropy

Example

- How certain are we in predicting the next value?
- "aaaaaaaaaaaaaa" - only one symbol, very certain
- $H=-\sum_{1}^{1} p(a) \log _{2} p(a)=-1 \log _{2} 1=0$
- "abbaabbabbaaba" - two symbols, evenly distributed, 50:50
- $H=-\left(p(a) \log _{2} p(a)+p(b) \log _{2} p(b)\right)=((0.5 \times-1)+(0.5 \times-1))=1$
- "bbabbababbbaba" - two symbols, unevenly distributed, 33:66
- $H=-\left(0.333 \log _{2} 0.333+0.666 \log _{2} 0.666\right)=0.91$
- "nmkfjigeoahlpdcb" - 16 symbols, very uncertain
- $H=-16 \times-0.25=4$
- Interpretation: We need $H(X)$ bits to encode the next symbol

Entropy

Application

- Data Representation: How to represent the text "abca" in memory?
- Variant 1: Three states to distinguish

- Memory consumption: 2 bits per character

Entropy

Application

- Data Representation: How to represent the text "abca" in memory?
- Variant 1: Three states to distinguish

- Memory consumption: 2 bits per character
- Variant 2: Some symbols are more frequent than the others!

$\rightarrow a=0, b=1.0, c=$	1	1

- Memory consumption: 1.5 bits per character
- This is the entropy of "abca" - the minimal memory consumption

Decision Trees

$$
H(X)=-\sum_{i=1}^{n} p\left(x_{i}\right) \log _{b} p\left(x_{i}\right)
$$

Examples (with $b=2$)

- $H(\{\boldsymbol{\checkmark}$, $\mathbf{V}\})=-\frac{4}{4} \log _{2} \frac{4}{4}=0$
- $H(\{\boldsymbol{\checkmark} \boldsymbol{\vee} \mathbf{x}\})=-(\underbrace{\frac{3}{4} \log _{2} \frac{3}{4}}_{\boldsymbol{\vee}}+\underbrace{\frac{1}{4} \log _{2} \frac{1}{4}}_{\mathbf{x}})=0.562$
- $H(\{\boldsymbol{\vee} \mathbf{x} \mathbf{x}\})=\ldots=0.693$

Decision Trees

Feature Selection (2)

$$
\begin{aligned}
H(\{\boldsymbol{\checkmark} \vee \boldsymbol{x}\}) & =H([3,1]) \\
& =0.562 \\
H(\{\boldsymbol{x}\}) & =H([1])=0 \\
H(\{\boldsymbol{\vee} \vee \vee\}) & =H([3]) \\
& =0
\end{aligned}
$$

$\{\boldsymbol{\checkmark} \boldsymbol{V} \mathbf{x}\}$

$$
\begin{aligned}
H(\{\boldsymbol{\checkmark} \vee \boldsymbol{x}\}) & =H([3,1]) \\
& =0.562 \\
H(\{\boldsymbol{\checkmark}\}) & =H([1])=0 \\
H(\{\boldsymbol{\vee} \boldsymbol{x}\}) & =H([2,1]) \\
& =0.637
\end{aligned}
$$

Decision Trees

Feature Selection（3）

$$
\begin{aligned}
H(\{\boldsymbol{\checkmark} \downarrow \mathbf{}\}\}) & =0.562 \\
H(\{\boldsymbol{x}\}) & =0 \\
H(\{\boldsymbol{\checkmark} \downarrow \mathbf{\checkmark}\}) & =0
\end{aligned}
$$

$$
\begin{aligned}
H(\{\boldsymbol{\checkmark} \vee \boldsymbol{x}\}) & =0.562 \\
H(\{\boldsymbol{\checkmark}\}) & =0 \\
H(\{\boldsymbol{\checkmark} \boldsymbol{x}\}) & =0.637
\end{aligned}
$$

$$
\begin{aligned}
& I G\left(f_{1}\right)=H(\{\boldsymbol{\checkmark} \boldsymbol{\checkmark}\})-\varnothing(H(\{\boldsymbol{x}\}), H(\{\boldsymbol{\checkmark} \downarrow \mathbf{\checkmark}\})) \\
& =0.562-0=0.562 \\
& \left.I G\left(f_{2}\right)=H(\{\boldsymbol{\checkmark} \text { レメ }\})-\varnothing(H(\{\boldsymbol{\checkmark}\}), H(\{\boldsymbol{\checkmark})\})\right) \\
& =0.562-\left(\frac{3}{4} 0.637+\frac{1}{4} 0\right) \\
& =0.562-0.562-0.477=0.085
\end{aligned}
$$

Example: TreeTagger

Helmut Schmid (1994). "Probabilistic part-of-speech tagging using decision trees". In: Proceedings of the conference on New Methods in Language Processing 12

- Web page: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
- Models for many different languages
- Including middle High German by Echelmeyer et al. (2017)

Example: TreeTagger

Helmut Schmid (1994). "Probabilistic part-of-speech tagging using decision trees". In: Proceedings of the conference on New Methods in Language Processing 12

- Web page: https://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
- Models for many different languages
- Including middle High German by Echelmeyer et al. (2017)
- Lexicon to provide candidates (and probabilities)
- Previous two pos tags as features for a decision tree

Summary

Decision Tree

- Classification algorithm
- Built around trees, recursive learning and prediction
- Pros
- Highly transparent (if the number of features is not very large)
- Reasonably fast
- Dependencies between features can be incorporated into the model
- Cons
- No pairwise dependencies
- May lead to overfitting
- Only nominal features
- Variants exist

References I

目 Echelmeyer，Nora／Nils Reiter／Sarah Schulz（2017）．＂Ein PoS－Tagger für „das＂ Mittelhochdeutsche＂．In：Book of Abstracts of DHd 2017．Bern，Switzerland．DOI： 10．18419／opus－9023．URL：https：／／elib．uni－stuttgart．de／handle／11682／9040．
R Quinlan，J．R（1986）．＂Induction of Decision Trees＂．In：Machine Learning 1．1，pp．81－106．
目 Schmid，Helmut（1994）．＂Probabilistic part－of－speech tagging using decision trees＂．In： Proceedings of the conference on New Methods in Language Processing 12.
围 Shannon，Claude E．（1948）．＂A mathematical theory of communication＂．In：The Bell System Technical Journal 27．3，pp．379－423．

