## Recap

### Decision Tree

- Classification algorithm
- Built around trees, recursive learning and prediction

Ser,

Pros

- Highly transparent (if the number of features is not very large)
- Reasonably fast
- Dependencies between features can be incorporated into the model

F..-

- Cons
  - No pairwise dependencies
  - May lead to overfitting
  - Only nominal features

Variants exist





5.

Bewente's

٦c

11



Reiter

Deep Learning

Winter 2023/24



## Machine Learning, Part 2 (= Deep Learning) Einführung in die Informationsverarbeitung

Nils Reiter

November 9, 2023



### Introduction: Neural Networks

- ► The machinery behind ChatGPT & co
- Old idea, but rediscovered in late 00s
- Basic idea: A (mathematical) function that takes input, does some computation, produces output

**E.g.**: 
$$f(x_1, x_2, x_3) = 0.5x_1 - 0.7x_2 + 0.1x_3 + 0.2$$

3/22

| Intuition |        |     | $\gamma = (x_1 + x_2 + 2)/2$ Allowed operations:<br>Addition, Subtraction, |
|-----------|--------|-----|----------------------------------------------------------------------------|
| $x_1$     | $x_2$  | y   | $y = 7 + 2 = x + \frac{x}{2} = x = x = 105x$                               |
| 2         | 2      | 3   |                                                                            |
| 2         | 4      | 8   | $\gamma = O_1 \cdot x_1 + x_2$                                             |
| S         | 4      | 8,2 |                                                                            |
|           | n<br>4 |     | Y= × + . × 2 +                                                             |
|           |        |     | -1 = 0.2 - 1 + 2.9 - 2.4                                                   |
|           |        |     |                                                                            |

## More complex example



- We have collected data for a binary classification (indicated by colors)
  - Our goal: Estimate a function that takes in  $x_1$  and  $x_2$  values and outputs probabilities for classes orange and blue
    - E.g.,  $x_1$ : word length,  $x_2$ : position in a sentence, output: is the word a noun?

Neural Network Playground (runs in your browser!)

## A Neuron

## A Neuron



### A Neuron Example



$$y = a(w_1x_1 + w_2x_2 + w_3x_3 + b)$$
  
=  $\sigma(0.1 \times 5 + 0.4 \times 3 + 0.7 \times -4 + 0.2)$   
=  $\sigma(-0.9)$   
= 0.2890504973749960365369

7/22

## A Neuron

Where do these values come from?



Many Neurons make a Network



Lager

#### "Forward Pass"

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
  - Conceptually: Applying functions to calculate individual values in sequence

#### "Forward Pass"

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
  - Conceptually: Applying functions to calculate individual values in sequence
- Practically, a lot of the computation happens in matrices in parallel
  - Hidden layer

Weights: W<sub>1,2</sub> =   

$$\begin{bmatrix}
 W_{11} & w_{12} & w_{13} \\
 w_{21} & w_{22} & w_{23}
 \end{bmatrix}

 Biases B2 = (b21, b22, b23)$$

"Forward Pass"

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
  - Conceptually: Applying functions to calculate individual values in sequence
- Practically, a lot of the computation happens in matrices in parallel
  - Hidden layer

• Weights: 
$$W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$$
  
• Biases  $B_2 = (b_{21}, b_{22}, b_{23})$ 

• Hidden layer computation:  $f_2(X) = \sigma(\underbrace{W_{1,2}^{\mathsf{T}}X + B_2})$ 

matrix operations

"Forward Pass"

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
  - Conceptually: Applying functions to calculate individual values in sequence
- Practically, a lot of the computation happens in matrices in parallel
  - Hidden layer

Weights: W<sub>1,2</sub> =   

$$\begin{bmatrix}
 W_{11} & w_{12} & w_{13} \\
 w_{21} & w_{22} & w_{23}
 \end{bmatrix}$$
 Biases B<sub>2</sub> = (b<sub>21</sub>, b<sub>22</sub>, b<sub>23</sub>)

• Hidden layer computation:  $f_2(X) = \sigma(\underbrace{W_{1,2}^{\mathsf{T}}X + B_2})$ 

matrix operations

- Deep learning involves a lot of matrix operations
  - GPUs are highly optimized for this
  - Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Deep Learning

### Feed-Forward Neural Networks

▶ The above is called a "feedforward neural network"

Information is fed only in forward direction

### Feed-Forward Neural Networks

The above is called a "feedforward neural network"

- Information is fed only in forward direction
- Configuration/design choices
  - Activation function in each layer
  - Number of neurons in each layer
  - Number of layers

11/22

## Learning Algorithm

- We can immediately calculate outcomes (= make predictions), even if all weights are generated randomly
- How do we improve the weights?

## Learning Algorithm

- We can immediately calculate outcomes (= make predictions), even if all weights are generated randomly
- How do we improve the weights?
- Gradient Descent
  - 1. Initialize all weights randomly
  - 2. Calculate and derive the loss (the 'wrongness') of the current weights on the training data
  - 3. Check if we have found the optimal solution
  - 4. If not, calculate the direction in which the loss decreases
  - 5. Go back to 3.

12/22

## Loss function: Intuition

- Loss should be as small as possible
- $\blacktriangleright$  Total loss can be calculated for given parameters  $\theta$ 
  - $\blacktriangleright \ \theta$  is a vector containing all weights and bias terms in the network
- Idea:
  - We change  $\theta$  until we find the minimum of the function
  - We use the derivative to find out if we are in a minimum
  - The derivative also tells us in which direction to go

## Loss function: Intuition



## Loss and Hypothesis Function

- $n_1(x_1, x_2) = w_1 x_1 + w_2 x_2 + b$
- $\blacktriangleright Hypothesis function h$ 
  - $\blacktriangleright$  Calculates outcomes, given feature values x
  - Done by the neural network
- $\blacktriangleright$  Loss function J
  - Calculates 'wrongness' of h, given parameter values  $\theta$  (and a data set)
  - ▶ In reality,  $\theta$  represents millions of parameters

n(15,17) orange

22.02.23

Jund

25

### Processing Language

- Neural networks operate on numbers
- ▶ To process language, we need to preprocess our data

## Processing Language

- Neural networks operate on numbers
- ▶ To process language, we need to preprocess our data

### Word Indices

- 1. Establish the vocabulary (i.e., the set of all known tokens [in the training corpus])
- 2. Create a ranking (i.e., count all word types)
- 3. Decide on a threshold (e.g., the  $10\,000$  most frequent words)
- 4. Replace all words above the threshold by an index number
- 5. Replace all other words by a special symbol

## Processing Language

- Neural networks operate on numbers
- To process language, we need to preprocess our data

### Word Indices

- 1. Establish the vocabulary (i.e., the set of all known tokens [in the training corpus])
- 2. Create a ranking (i.e., count all word types)
- 3. Decide on a threshold (e.g., the  $10\,000$  most frequent words)
- 4. Replace all words above the threshold by an index number
- 5. Replace all other words by a special symbol
- $\Rightarrow\,$  "Out of vocabulary" (OOV) words are a challenge for applications

Literature basis

Two very influential papers by Mikolov et al.

Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: *arXiv cs.CL*. URL: https://arxiv.org/pdf/1301.3781.pdf

Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributedrepresentations-of-words-and-phrases-and-their-compositionality.pdf

### Software package

Core Idea

Define a classification task for which we have huge training data sets

- Given a word, predict predict possible context words
- Training data: Any text collection (e.g., Wikipedia)
- ► Train a neural network
- Extract learned weights and use as embeddings



Deep Learning

#### Skip-gram

Context: ±2 words around target word t ... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4



Classifier:

- Predict for (t, c) wether c are *really* context words for t
- ln other words: Probability of  $\vec{t}$  and  $\vec{c}$  being positive examples:  $p(+|\vec{t},\vec{c})$

#### Skip-gram

- Context:  $\pm 2$  words around target word t
  - ... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
    - c1 c2 t
- Classifier:
  - $\blacktriangleright$  Predict for (t,c) wether c are really context words for t
  - ln other words: Probability of  $\vec{t}$  and  $\vec{c}$  being positive examples:  $p(+|\vec{t},\vec{c})$
- Probability is based on similarity
  - "a word is likely to occur near the target if its embedding is similar to the target embedding"

Jurafsky/Martin (JM19, 112)

#### Skip-gram

- $\blacktriangleright$  Context:  $\pm 2$  words around target word t
  - ... lemon, a [tablespoon of apricot jam, a] pinch ...
    - c1 c2 t c3 c4
- Classifier:
  - $\blacktriangleright$  Predict for (t,c) wether c are really context words for t
  - ln other words: Probability of  $\vec{t}$  and  $\vec{c}$  being positive examples:  $p(+|\vec{t},\vec{c})$
- Probability is based on similarity
  - "a word is likely to occur near the target if its embedding is similar to the target embedding"

Jurafsky/Martin (JM19, 112)

Similarity of vectors? Cosine!

#### $\mathsf{Skip}\mathsf{-}\mathsf{gram}$

- $\blacktriangleright$  Context:  $\pm 2$  words around target word t
  - ... lemon, a [tablespoon of apricot jam, a] pinch ...
    - c1 c2 t c3 c4
- Classifier:
  - Predict for (t, c) wether c are *really* context words for t
  - ln other words: Probability of  $\vec{t}$  and  $\vec{c}$  being positive examples:  $p(+|\vec{t},\vec{c})$
- Probability is based on similarity
  - "a word is likely to occur near the target if its embedding is similar to the target embedding"

Jurafsky/Martin (JM19, 112)

- Similarity of vectors? Cosine!
- Similarity  $\rightarrow$  probability? Mathematical conversion



#### Neural Networks

- Many individual neurons in combination
- During training weights will be adapted, until best approximation to training data is reached
- Prediction: Application of weights, i.e., multiplication and addition

### ► Word2Vec

- Use a neural network to predict wether two words are really appearing together in texts
- Extract learned weights as embeddings
- Leads to embeddings that are similar, if the words appear in similar contexts
  - E.g., Berlin and Paris appear in the contexts of country capital

### References I

- Jurafsky, Dan/James H. Martin (2019). *Speech and Language Processing*. 3rd ed. Draft of October 16, 2019. Prentice Hall.
- Mikolov, Tomáš/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: *arXiv cs.CL*. URL:

https://arxiv.org/pdf/1301.3781.pdf.

 Mikolov, Tomáš/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by
 C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-wordsand-phrases-and-their-compositionality.pdf.