Lösungsvorschlag zur Sitzung am 11.01.2021 – Theoretische

Informatik (Formale Sprachen/ Automatentheorie)

Abgabe auf Ilias bis 18.01.2021, 10.00 Uhr

Hinweis: Es gibt mehrere richtige Lösungen für die Aufgaben. Die hier aufgeführten Lösungen sind nur Beispiele.

Aufgabe 1

Geben Sie jeweils 2 Beispiele für Wörter, welche sich aus dem Alphabet Σ , bilden lassen.

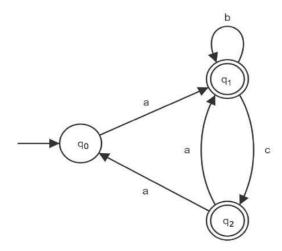
- a) $\Sigma_1 = \{a, d, f, h, i, m, u, s, e\}$
- b) $\Sigma_2 = \{1, 4, 5, 6\}$

Lösung:

- a) 1. Beispiel: usimu
 - 2. Beispiel: haus
- b) 1. Beispiel: 164
 - 2. Beispiel: 5

Aufgabe 2

Geben Sie Σ für die folgende Sprache L an:


- a) $L_1 = \{\text{Sonne, Vogel, See, Urlaub}\}$
- b) $L_2 = \{24, 66, 42, 8, 60\}$

Lösung:

- a) $\Sigma_1 = \{a, b, e, g, l, n, o, r, u, S, U, V\}$
- b) $\Sigma_2 = \{0,2,4,6,8\}$

Aufgabe 3

a) Bestimmen sie den Automaten $A_1 = (Z, \Sigma, \delta, z_0, E)$.

b) Finden Sie jeweils eine Zeichenkette, für die A_1 einen akzeptierenden und einen nicht akzeptierenden Lauf besitzt.

Geben Sie die beiden Zeichenkette an.

Lösung:

a)
$$A_1 = (Z, \Sigma, \delta, z_0, E)$$

$$Z = \{q_0, q_1, q_2\}$$

$$\Sigma = \{a, b, c\}$$

$$\delta = \{, , , , \}$$

$$z_0 = q_0$$

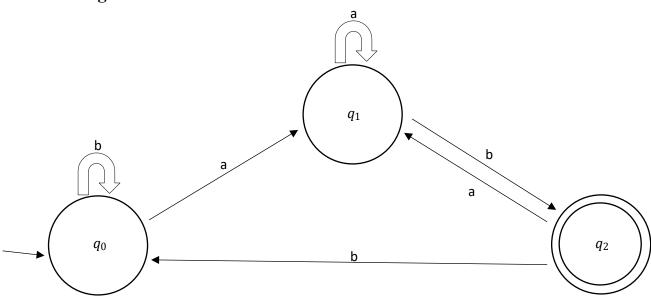
$$E = \{q_1, q_2\}$$

b) Beispiele für Zeichenketten, die einen akzeptierenden Lauf besitzen: aabb

ac

acaa

Beispiele für Zeichenketten, die **keinen** akzeptierenden Lauf besitzen:


aaacb

acccb

Aufgabe 4

Zeichnen Sie einen Automaten über dem Alphabet {a,b}, welcher alle Wörter akzeptiert, die auf "ab" enden.

Lösung:

