Wissenschaftliche Literatur lesen, verstehen und präsentieren

HS Sprachtechnologie für eine bessere Welt (Winter semester 2021/22)

Nils Reiter, nils.reiter@uni-koeln.de

October 12, 2021

Sitzungsthemen und -zuordnungen

Datum	Thema	Person(en)
09.11.	Fake News	Görzen, Anita
16.11.	Dialogue Systems	Klink, Julian; Debbeler, Anke
23.11.	A nonymization/De-Anonymization	Homma, Monami; Fritz, Edgar
30.11.	Mental Health	Schäfer, Christine; Berg, Laura
07.12.	Hate speech: Racism	Schock, Kamil; Biwer, Max
14.12.	Hate speech: Sexism	Truong, Nghia; Munsch, Corinna

Reiter Scientific Literature October 12, 2021 2/27

Was waren besonders gute I	Referate die Sie erleb	ot haben? Warum	waren die gut?

Section 1

Overview

Reiter Scientific Literature October 12, 2021

4 / 27

- Computational Linguistics (CL): A young field
 - ► Compared to philosophy, physics, ...
- ▶ Interdisciplinary between computer science and linguistics
 - Pendular movement
 - Currently: Strongly in the CS field

- Computational Linguistics (CL): A young field
 - Compared to philosophy, physics, ...
- ▶ Interdisciplinary between computer science and linguistics
 - Pendular movement
 - Currently: Strongly in the CS field

Core Requirements for Scientific Literature

Quality assurance

5 / 27

- Computational Linguistics (CL): A young field
 - Compared to philosophy, physics, ...
- ▶ Interdisciplinary between computer science and linguistics
 - Pendular movement.
 - Currently: Strongly in the CS field

Core Requirements for Scientific Literature

- Quality assurance
 - Reviewing

- Computational Linguistics (CL): A young field
 - Compared to philosophy, physics, ...
- ▶ Interdisciplinary between computer science and linguistics
 - Pendular movement
 - Currently: Strongly in the CS field

Core Requirements for Scientific Literature

- Quality assurance
 - Reviewing
- Sustainability and (in principle) accessibility
 - ▶ It should be possible to access a work in the distant future

- Computational Linguistics (CL): A young field
 - Compared to philosophy, physics, ...
- Interdisciplinary between computer science and linguistics
 - Pendular movement
 - Currently: Strongly in the CS field

Core Requirements for Scientific Literature

- Quality assurance
 - Reviewing
- Sustainability and (in principle) accessibility
 - ▶ It should be possible to access a work in the distant future
- Publishing houses ensure both (in theory)

Peer Review

- Scientific articles are reviewed by other researchers/scientists
- Blindness
 - ▶ Double blind: Reviewer and authors are anonymous
 - Single blind: Only reviewers are anonymous
 - ▶ Zero blind / "Open Review": No one is anonymous
- ▶ Different fields have different preferences
 - and different people have different preferences
 - CL: Double-blind (recently reaffirmed)
 - But: Preprint servers are an important venue in machine learning!

6/27

Publication Venues

- ▶ Monographs (books): Except for theses, typically not reviewed
- Journal articles: Peer reviewed (details are journal-dependent)
- ► Conference articles: Peer reviewed (details are conference-dependent)
 - ▶ "Proceedings" = Collection of all conference articles

Publication Venues

- Monographs (books): Except for theses, typically not reviewed
- Journal articles: Peer reviewed (details are journal-dependent)
- Conference articles: Peer reviewed (details are conference-dependent)
 - ► "Proceedings" = Collection of all conference articles

Lengths and "Abstracts"

- Length varies
 - ightharpoonup Conference articles < 10 pages
 - ▶ Journal articles ca. 10 50 pages
- "Abstract"
 - Literal meaning: A summary of an article
 - ► Conference abstracts (DHd/DH) ≃ short articles

Relevant Publication Venues for CL I

Conferences

- ACL / NAACL / EACL / EMNLP: Conferences (double-blind)
 - Association for Computational Linguistics
 - Co-located workshops with more specific focus
 - "Workshop" in CL: Mini conference
 - https://aclanthology.org
 - Workshops associated with *CL conferences also in anthology
- COLING. KONVENS: Smaller conferences

Relevant Publication Venues for CL II

Journals

- ► CL: Uncommon
- Computational Linguistics https://direct.mit.edu/coli
 - ► Also in anthology: https://aclanthology.org/venues/cl/
 - Fully open access
- ▶ Digital Scholarship in the Humanities (Literary and Linguistic Computing) https://academic.oup.com/dsh
 - Partially open access via UB

Relevant Publication Venues for CL III

Others

- ▶ DFG (funding agency): No reviewing \rightarrow no worth
- ▶ Blogs it depends on their authors
- ► Sammelbände / collections

Reiter Scientific Literature October 12, 2021 10 / 27

Structure of a CL Paper

Common structure

- Introduction
- Background
 - Optional. What do we have to know about the phenomenon?
- Related Work
 - Work dealing with same or similar problem
- ► Approach (the core)
 - Description on conceptual level
 - Good: Point out assumptions the approach makes
- ► Data set(s) / Corpus
 - Inter-Annotator agreement

- Experiments
 - ► Baseline(s)
 - Evaluation Metric(s)
- Results
- Error Analysis
 - Types of errors the system makes
- Conclusions
 - Summary
 - Findings about concept(s)
 - Future work

Section 2

Reading CL Literature

How to Read?

- ► Reading scientific literature is work
- ► A work environment is important
- ▶ Reading multiple times is often necessary

How to Read?

- Reading scientific literature is work
- ► A work environment is important
- Reading multiple times is often necessary

References

- Scientific references consist in:
 - ► Markers in the text (e.g., "Doe (2015)" oder "[3]")
 - Bibliographic details at the end
- Different styles
 - CL: author-year
- URLs or DOIs
 - https://www.example.com
 - $ightharpoonup 10.1515/9783110693973 \Rightarrow https://doi.org/10.1515/9783110693973$

Guiding Questions

You should be able to answer (at least) these questions

- What was the task/the problem to be solved?
- ▶ What is the new aspect compared to previous research?
- ► How well did it work?
 - ▲ Authors have an interest to highlight success and neglect failure
- ▶ Which experiments were made to measure it?
 - Which data and evaluation metrics were used?

Guiding Questions

You should be able to answer (at least) these questions

- What was the task/the problem to be solved?
- What is the new aspect compared to previous research?
- ▶ How well did it work?
 - Authors have an interest to highlight success and neglect failure
- ▶ Which experiments were made to measure it?
 - Which data and evaluation metrics were used?

Relevant Terms

Contribution, Hypothesis, Claim, Method, Experiment, Result, Interpretation, Conclusion

Critical Reflection of Literature

- ▶ Was there an easier way to achieve similar performance?
- ▶ How many assumptions are incorporated (maybe implicit)?
 - ▶ What would be needed to redo it from scratch?
 - ▶ What would be needed to adapt it to another language/genre/domain?
- ▶ Why did the authors did it the way they did?
- Can the experiments actually show what the authors claim they show?
- Are the experiments "correctly" interpreted? Are there alternative interpretations that are just as reasonable?
- ▶ Is there evidence to generalize results to "the language", "the text type newspaper", ...?

Section 3

Giving (Scientific) Talks

Group Exercise

- 1. What are the three most important recommendations you would give to a new student on talks in seminars?
- 2. What should they avoid at all costs?
- 3. Do you have a secret, game-changing tip?

Outlining the Topic I

▶ What do you want (and need) to say?

Focus

► The talk should have a clear focus. What's the context of the talk? What's the topic of the course? A paper may contain parts that are not relevant in the given context **and vice versa**.

Understanding

► The talk should be understandable. Explain and introduce as much as needed, but not more. In university seminars, imagine the others as knowing as much as you **before** starting to read.

Structure

- Divide the talk in parts and subparts. The structure of the paper is not necessarily a good structure for the talk (but can be).
- ▶ Write your outline down, but think of it as a draft!
- Do not start making slides now.

Outlining of the Topic II

- ► See your talk from the audience's perspective
 - ▶ What can you expect them to know? What did you need to look up?

Reiter Scientific Literature October 12, 2021 19/27

Outlining of the Topic II

- ► See your talk from the audience's perspective
 - ▶ What can you expect them to know? What did you need to look up?
- ► Get (honest) feedback
 - But: Your talk, your decision, your responsibility
- ► Make necessary changes
- Repeat the process

Making Slides

- ▶ Use a presentation tool for making slides: LaTeX+Beamer, MS PowerPoint, Apple Keynote, OpenOffice Presenter, ...
- Use one of the built-in themes
 - Preferably a simple one
- Make the structure visible to the audience
 - ► Head/footlines, section break slides, etc.
- Avoid animations, effects etc.
- ► No screenshots of tables and figures
 - ► Recreate them in the presentation program (for readability)
- ► Scientific talks have references and a bibliography at the end

(Reiter, 2021)

▶ But only show it when someone asks

Making Slides

- ► Use a presentation tool for making slides: LaTeX+Beamer, MS PowerPoint, Apple Keynote, OpenOffice Presenter, ...
- Use one of the built-in themes
 - Preferably a simple one
- Make the structure visible to the audience
 - ► Head/footlines, section break slides, etc.
- Avoid animations, effects etc.
- ► No screenshots of tables and figures
 - ▶ Recreate them in the presentation program (for readability)
- ► Scientific talks have references and a bibliography at the end

(Reiter, 2021)

- But only show it when someone asks
- No running text on slides: The audience either reads or listens.

Making Slides

- ▶ Use a presentation tool for making slides: LaTeX+Beamer, MS PowerPoint, Apple Keynote, OpenOffice Presenter, ...
- Use one of the built-in themes
 - Preferably a simple one
- Make the structure visible to the audience
 - Head/footlines, section break slides, etc.
- Avoid animations, effects etc.
- No screenshots of tables and figures
 - ► Recreate them in the presentation program (for readability)
- Scientific talks have references and a bibliography at the end

(Reiter, 2021)

- But only show it when someone asks
- ▶ No running text on slides: The audience **either** reads **or** listens.

If you have to change the font size so that everything fits, there is too much stuff on the slide.

Preparing the Actual Talk

= Rehearsing

- ► Go through the slides
- Speak loudly what you want to say
- Note the points where you stumbled or had problems finding words
- Change the slides accordingly
- ▶ Write down what you want to say at least in keywords
- Maybe: Script the first few sentences
- Pay attention to the time

Discussion Preparation

- Do not put supporting information in the main presentation
 - ▶ E.g., charts, tables, long examples or detailed numbers that you do not talk about
- ▶ Add slides to your presentation that are useful for the discussion
- ▶ The slides should be in the same file, but at the end

Discussion Preparation

- Do not put supporting information in the main presentation
 - E.g., charts, tables, long examples or detailed numbers that you do not talk about
- ▶ Add slides to your presentation that are useful for the discussion
- ► The slides should be in the same file, but at the end
- Discussion
 - ▶ What are the weak points that could come up as a question?

Giving the Talk

- Stage fright
 - Inability to breathe
 - ► Inability to stand up
 - Inability to operate brain
- ► That's normal and to be expected

Giving the Talk

- Stage fright
 - Inability to breathe
 - Inability to stand up
 - Inability to operate brain
- ► That's normal and to be expected

E

What to do about it

- ► Be prepared for it
- Avoid waiting in front of the audience
- Imagine the feeling afterwards
- Script the beginning
- ► Try out what works for you

Be Seen and Heard

- ▶ Don't talk to the wall, window or computer
- ▶ Choose someone in the back (ideally, a nodder) to talk to
- Make breaks for questions
- ► Finish on time!

