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Automatization Methods

▶ Logistic regression (Panchendrarajan et al., 2016; Preoţiuc-Pietro et al., 2019)
▶ Support vector machines (Krautter et al., 2020)
▶ Neural networks

▶ Feed-forward (Preoţiuc-Pietro et al., 2019)
▶ LSTM (Katiyar/Cardie, 2017; Preoţiuc-Pietro et al., 2019)

Reiter NLP-Experimente: Neural Networks November 18, 2021 3 / 45



Supervised Machine Learning
Two parts to understand

Prediction Model
How do we make predictions on data instances?
(e.g., how do we assign a part of speech tag to a (unlabeled) word?)

Learning Algorithm
How do we create a prediction model, given annotated data?
(e.g., how do we create rules for assigning a part of speech tag to a word?)
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Section 1

Neural Networks



Neural Networks

A Neuron
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Neural Networks

A Neuron

x1 w1

x2
w2

x3

w3

b a y

y = a(w1x1 + w2x2 + w3x3 + b)
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Neural Networks

A Neuron
Example

5
0.1

3
0.4

−4

0.7
0.2 σ y

y = a(w1x1 + w2x2 + w3x3 + b)
= σ(0.1× 5 + 0.4× 3 + 0.7×−4 + 0.2)

= σ(−0.9)

= 0.2890504973749960365369
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Neural Networks

A Neuron
Where do these values come from?

x1 w1

x2
w2

x3

w3

b a y

Calculated during execution
Learned during training (parameters)

Specified during design (hyper parameter)
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Neural Networks

Many Neurons make a Network

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

a(b21 + w11x1 + w21x2)

a(b22 + w12x1 + w22x2)

a(b23 + w13x1 + w23x2)

a(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
a: activation function
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Neural Networks

Forward Pass
▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute

the output of the network
▶ Conceptually: Applying functions to calculate individual values in sequence

▶ Practically, a lot of the computation happens in matrices in parallel
▶ Hidden layer

▶ Weights: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation: f2(X) = σ( W⊺
1,2X + B2︸ ︷︷ ︸

matrix operations

)

▶ Deep learning involves a lot of matrix operations
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning
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Neural Networks

Feed-Forward Neural Networks

▶ The above is called a “feedforward neural network”
▶ Information is fed only in forward direction

▶ Configuration/design choices
▶ Activation function in each layer
▶ Number of neurons in each layer
▶ Number of layers
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Neural Networks

Processing Language

▶ Neural networks operate on numbers
▶ To process language, we need to preprocess our data

Word Indices
1. Establish the vocabulary (i.e., the set of all known tokens [in the training corpus])
2. Create a ranking (i.e., count all word types)
3. Decide on a threshold (e.g., the 10 000 most frequent words)
4. Replace all words above the threshold by an index number
5. Replace all other words by a special symbol
⇒ “Out of vocabulary” (OOV) words are a challenge for applications
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Neural Networks

Embeddings

▶ An embedding represents words or documents as vectors
▶ Things are ‘embedded’ in a vector space

▶ A ‘learned representation’
▶ The vector representation of a word is helpful for the target class
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Neural Networks

Representing Words without Embeddings

12the

13dog

21barks

29.

Figure: A neural network with word indices as input
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Neural Networks

Representing Words with Embeddings
 0.3

0.7
. . .

12the

 0.5
0.1
. . .

13dog

 −0.1
0.2
. . .

21barks

 0.9
1.3
. . .

29.

Figure: A neural network with word embeddings as input
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Neural Networks

Representing Words with Embeddings
 0.3

0.7
. . .


12

 0.5
0.1
. . .


13

 −0.1
0.2
. . .


21

 0.9
1.3
. . .


29

▶ Where do the word vectors come from?

Learned embeddings
▶ They are weights/parameters and part of θ
⇒ They are trained as well
▶ ‘The network chooses its own, task-specific features’

Pre-trained embeddings
▶ All weights from a neural network can be extracted
▶ Pre-trained embeddings are provided from networks trained on huge data sets

▶ word2vec: Train embeddings for a context prediction task: Given word wi, how likely is it
that wj appears in its context? Mikolov et al. (2013)
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Neural Networks

Example

1

0.5

0.3

0.8
0.3
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0.
7

x1

x2

0.1

0.6

0.7

0.
2

0.8

1

x1 x2 y
0 0 0.86169636
1 0 0.87786007
1 1 0.891605

10 10 0.90814614
...

...
...

Figure: Neural network with randomly initialized weights
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5 # setup the model architecture
6 model = keras.Sequential()
7 model.add(layers.InputLayer(input_shape=(2,)))
8 model.add(layers.Dense(3, activation="sigmoid"))
9 model.add(layers.Dense(1, activation="sigmoid"))

10
11 model.compile() # compile it
12
13 w1 = [ # weights between neurons
14 np.array([[0.1,0.6,0.7],[0.2,0.8,1]]),
15 # bias terms
16 np.array([0.5,0.8,0.5]) ]
17
18 w2 = [ # weights between neurons
19 np.array([[0.3],[0.3],[0.7]]),
20 # bias terms
21 np.array([1]) ]
22 model.layers[0].set_weights(w1)
23 model.layers[1].set_weights(w2)
24
25 y = model.predict(np.array([[0,0]])) # generate predictions
26 print(y)

Neural network with manually
specified weights as above

Ilias: simple-nn.py



Neural Networks

Learning Algorithm

▶ We can immediately calculate outcomes (= make predictions), even if all weights are
generated randomly

▶ How do we improve the weights?

▶ Gradient Descent
1. Initialize all weights randomly
2. Calculate and derive the loss (the ‘wrongness’) of the current weights on the training data
3. Check if we have found the optimal solution
4. If not, calculate the direction in which the loss decreases
5. Go back to 3.
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Section 2

Gradient Descent



Gradient Descent

Loss function: Intuition

▶ Loss should be as small as possible
▶ Total loss can be calculated for given parameters θ

▶ θ is a vector containing all weights and bias terms in the network
▶ Idea:

▶ We change θ until we find the minimum of the function
▶ We use the derivative to find out if we are in a minimum
▶ The derivative also tells us in which direction to go
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Gradient Descent

Loss function: Intuition

θ

J(θ)

Reiter NLP-Experimente: Neural Networks November 18, 2021 22 / 45



Gradient Descent

Loss and Hypothesis Function

▶ Hypothesis function h
▶ Calculates outcomes, given feature values x
▶ Done by the neural network

▶ Loss function J
▶ Calculates ‘wrongness’ of h, given parameter values θ (and a data set)
▶ In reality, θ represents millions of parameters
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Gradient Descent

Loss function: Definition

▶ Different loss function are in use
▶ Which one to use depends on our aims

Binary Cross-Entropy Loss
▶ Loss function used for binary classification problems
▶ Assumption: Output of the network is in [0; 1], 0/1 representing the two classes

J(θ) = − 1

m

m∑
i=0

yi log hθ(xi) + (1− yi) log(1− hθ(xi))
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Gradient Descent

Loss function: Definition
Binary Cross-Entropy Loss

J(θ) =

− 1

m

m∑
i=0

yi log2 hθ(xi)︸ ︷︷ ︸
0 iff yi=0

+ (1−yi) log2(1−hθ(xi))︸ ︷︷ ︸
0 iff yi=1

m Number of training instances
yi The true outcomes (from training data)
xi The input values
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Section 3

Recurrent Neural Networks



Recurrent Neural Networks

Different Layer Types
▶ So far: fully connected layer
▶ Other layers

▶ Convolutional layer
▶ Dropout layer
▶ Recurrent layer
▶ Long short-term memory (LSTM) layer
▶ …

Sequences are important for NLP
▶ Many NLP tasks are sequential tasks: The outcome of one item has impact on the next

item (e.g., part of speech)
▶ Recurrent and LSTM layers add new connections
▶ Instead of processing one item at a time, they look at sequences
▶ Connections along the sequence (i.e., the neuron knows its output for the previous item)
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Recurrent Neural Networks

Recurrent Neural Networks

y

x1

x2

b1

b2

b3
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Recurrent Neural Networks
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Recurrent Neural Networks

Recurrent Neural Networks

▶ Feed-forward neural networks: Weights between neurons
▶ Recurrent neural networks

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Also possible in two directions

Issues with RNNs
▶ Single neuron that transmits information along the sequence
▶ Long-distance information gets lost, because short-distance information is more prominent
▶ But: First architecture to process sequences as sequences
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Section 4

Long Short-Term Memory (LSTM)



Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

▶ Frequently used architecture for sequence labeling tasks
▶ Sub type of a recurrent layer
▶ Recurrent layer

▶ Simple neuron, one connection along the sequence
▶ LSTM Hochreiter/Schmidhuber (1997)

▶ A neuron with more internal structure (often called “cell” or “unit”)
▶ Two connections along the sequence
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Long Short-Term Memory (LSTM)

Recurrent Layer
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Figure: Recurrent Neural Network
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Long Short-Term Memory (LSTM)

LSTM Layers
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Figure: Neural Network with an LSTM Layer
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Long Short-Term Memory (LSTM)

LSTM Cells

▶ Two connections along the sequence
▶ h: The regular history of outcomes

▶ I.e., the outcome of a neuron is passed into the neuron for the next sequence element
▶ C: A state for the cell

▶ Allows long-term storage

▶ Cell state is controlled within the cell
▶ Forget: Previous state is removed
▶ Input: Current input is (partially) stored in the cell state
▶ Output: How much of the cell state is added to the cell output

▶ All ‘gates’ are controlled by weights, learned during training
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Long Short-Term Memory (LSTM)

An LSTM Cell

Se
qu

en
ce

t
x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

sigma

sigma

sigma

tanh

×

×

×

+

tanh

tanh

activation function
sigmoid: [0; 1]
tanh: [−1; 1]

+ arithmetical operator
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Long Short-Term Memory (LSTM)

An LSTM Cell
with labeled connections

Se
qu

en
ce

t
x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

τ

activation function
σ : [0; 1]
τ : [−1; 1]

+ arithmetical operator
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Long Short-Term Memory (LSTM)

An LSTM Cell
Forget Gate

f(t) = σ
(
w⃗f × (xt + h(t − 1))

)
▶ How much of the cell state do

we forget?
▶ If f(t) = 0, cell state is emptied
▶ w⃗f: Trainable weights for this

gate

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)
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Long Short-Term Memory (LSTM)

An LSTM Cell
Input Gate

How much of the current value is put
into the cell state?

ff(t) = σ
(
w⃗ff × (xt + h(t − 1))

)
C∗(t) = τ (w⃗C × (xt + h(t − 1)))

i(t) = ff(t)× C∗(t)

▶ w⃗: trainable weights

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)
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Long Short-Term Memory (LSTM)

An LSTM Cell
Output Gate

How do we calculate the output(s) of
the cell?
▶ Three outputs:

▶ y(t): regular output for the
next layer

▶ h(t): passed on to the next
sequence element

▶ C(t): new cell state

C(t) = f(t)× C(t − 1) + i(t)
fff(t) = σ

(
w⃗fff × (xt + h(t − 1))
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Long Short-Term Memory (LSTM)

An LSTM Unit

Cell state C(t)
▶ A LSTM unit has a cell state (used for the long-term memory)
▶ Four gates control the state of the cell – each with its own weight

▶ Forget gate f(t): How much of the previous state is kept
▶ f(t) = σ(w⃗f × (x(t) + h(t−1)))

▶ Input gate ff(t), C∗(t), i(t): How much of the current state is stored
▶ ff(t) = σ(w⃗ff × (x(t) + h(t−1))), C∗(t) = τ(w⃗C × (x(t) + h(t−1))), i(t) = ff(t)× C∗(t)

▶ Output gate fff(t): What do we push to the next unit and what do we give out
▶ fff(t) = σ(w⃗fff(x(t) + h(t−1)))
▶ C(t) = f(t)× C(t−1) + i(t)
▶ h(t) = fff(t)× τ(C(t))

▶ Weights to be learned: w⃗f, w⃗ff, w⃗fff, w⃗C
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Section 5

Summary



Summary

Summary
Neural networks
▶ Consist of neurons, which combine values from previous neurons
▶ Matrix computation
▶ Can ‘learn’ any relation between input and output

Gradient descent
▶ Basic form to train a neural network
▶ Start with random weights, then iteratively improve
▶ Loss: Quantification of the wrongness of the current weights

Recurrent/LSTM networks
▶ Sequence labeling: Prediction for element i depends on prediction for element i − 1

▶ Recurrent: Additional link along the sequence
▶ LSTM: Two additional links along the sequence, and internal structure
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