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Introduction

▶ So far
▶ Embeddings are context-free: Each string gets one vector
▶ Obvious difficulty: Lexical ambiguity not represented

▶ E.g., “bank” (financial institution) and “bank” (place to sit) have the same vector

▶ Contextualised Embeddings!
▶ Multiple ideas

▶ Embeddings from Language Models (“ELMo”) Peters et al. (2018)
▶ Bidirectional Encoder Representations from Transformers (“BERT”) Devlin et al. (2019)
▶ …

▶ Today: ELMo
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Unterstanding ELMo

1 Neural Networks
2 BiLSTM-Layers
3 ELMo
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Section 1

Neural Networks



Neural Networks

A Neuron
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Neural Networks

A Neuron

x1 w1

x2
w2

x3

w3

b a y

y = a(w1x1 + w2x2 + w3x3 + b)
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Neural Networks

A Neuron
Example

5
0.1

3
0.4

−4

0.7
0.2 σ y

y = a(w1x1 + w2x2 + w3x3 + b)
= σ(0.1× 5 + 0.4× 3 + 0.7×−4 + 0.2)

= σ(−0.9)

= 0.2890504973749960365369
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Neural Networks

A Neuron
Where do these values come from?

x1 w1

x2
w2

x3

w3

b a y

Calculated during execution
Learned during training (parameters)

Specified during design (hyper parameter)
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Neural Networks

Many Neurons make a Network

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

a(b21 + w11x1 + w21x2)

a(b22 + w12x1 + w22x2)

a(b23 + w13x1 + w23x2)

a(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
a: activation function

Reiter Contextual Word Embeddings 07.07.2022 8 / 42



Neural Networks

Forward Pass
▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute

the output of the network
▶ Conceptually: Applying functions to calculate individual values in sequence

▶ Practically, a lot of the computation happens in matrices in parallel
▶ Hidden layer

▶ Weights: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation: f2(X) = σ( W⊺
1,2X + B2︸ ︷︷ ︸

matrix operations

)

▶ Deep learning involves a lot of matrix operations
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning
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Neural Networks

Feed-Forward Neural Networks

▶ The above is called a “feedforward neural network”
▶ Information is fed only in forward direction

▶ Configuration/design choices
▶ Activation function in each layer
▶ Number of neurons in each layer
▶ Number of layers
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Neural Networks

Example

1

0.5

0.3

0.8
0.3

0.5

0.
7

x1

x2

0.1

0.6

0.7

0.
2

0.8

1

x1 x2 y
0 0 0.86169636
1 0 0.87786007
1 1 0.891605

10 10 0.90814614
...

...
...

Figure: Neural network with randomly initialized weights
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5 from tensorflow import keras
6 from tensorflow.keras import layers
7
8 # setup the model architecture
9 model = keras.Sequential()

10 model.add(layers.InputLayer(input_shape=(2,)))
11 model.add(layers.Dense(3, activation="sigmoid"))
12 model.add(layers.Dense(1, activation="sigmoid"))
13
14 model.compile() # compile it
15
16 w1 = [ # weights between neurons
17 np.array([[0.1,0.6,0.7],[0.2,0.8,1]]),
18 # bias terms
19 np.array([0.5,0.8,0.5]) ]
20
21 w2 = [ # weights between neurons
22 np.array([[0.3],[0.3],[0.7]]),
23 # bias terms
24 np.array([1]) ]
25
26 model.layers[0].set_weights(w1)
27 model.layers[1].set_weights(w2)
28
29 y = model.predict(np.array([[0,0]])) # generate predictions
30 print(y)

Neural network with manually
specified weights as above
lehre.idh: simple-nn.py



Neural Networks

Learning Algorithm

▶ We can immediately calculate outcomes (= make predictions), even if all weights are
generated randomly

▶ How do we improve the weights?

▶ Gradient Descent
1. Initialize all weights randomly
2. Calculate and derive the loss (the ‘wrongness’) of the current weights on the training data
3. Check if we have found the optimal solution
4. If not, calculate the direction in which the loss decreases
5. Go back to 3.

▶ NN training is not exactly gradient descent, but so-called backpropagation
1. Distributing weight changes over the layer is more complex
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Neural Networks

Processing Language
• Neural networks operate on numbers
• To process language, we need to preprocess our data
• Two options

1 Use static word embeddings 
2 Use contextual word embeddings 
3 Use word indices 

Word Indices
1. Establish the vocabulary (i.e., the set of all known tokens [in the training corpus])
2. Create a ranking (i.e., count all word types)
3. Decide on a threshold (e.g., the 10 000 most frequent words)
4. Replace all words above the threshold by an index number
5. Replace all other words by a special symbol
⇒ “Out of vocabulary” (OOV) words are a challenge for applications
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Section 2

BiLSTM-Layers



BiLSTM-Layers

Motivation

▶ Language works sequentially
▶ Word meaning depends on context (see above)

▶ Feedforward neural networks
▶ One instance (sentence, document, …) at a time

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem
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BiLSTM-Layers

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and dependent on each other

I.e. The prediction for one class influences the next

Examples
▶ Part of speech tagging

▶ “the dog barks” → “DET NN VBZ”
▶ Named entity recognition, mention detection

▶ “John Bercow says he has changed allegiances to join Labour”
→ “B-PER I-PER O O O O O O O B-ORG”
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BiLSTM-Layers

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer
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BiLSTM-Layers

Towards Recurrent Neural Networks

▶ To work with sequences, we need to include the sequence into the model

Notation
X = (X1,X2, . . . ) The input data set with instances
Xi = (x1, x2, . . . ) One instance with feature values

Yi Output for instance Xi
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BiLSTM-Layers

Towards Recurrent Neural Networks

Xi Yi

Figure: A simple neural network with 1 hidden layer
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BiLSTM-Layers

Recurrent Neural Networks

Se
qu

en
ce

X1 Y2

X2 Y2

X3 Y3

X4 Y4

This is a single
neuron at different times!

Figure: Recurrent Neural Network (unfolded)
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BiLSTM-Layers

Recurrent Neural Networks

X Y

t+1

Figure: A recurrent neural network with 1 hidden layer (folded). Squares represent sequentially used
neurons.
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BiLSTM-Layers

Recurrent Neural Networks
Example with multiple features per instance

y

x1

x2

b1

b2

b3
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Recurrent Neural Networks
Example with multiple features per instance
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BiLSTM-Layers

Recurrent Neural Networks
▶ FFNN: Weights between neurons
▶ RNN

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Sequence != Time
▶ Assumption: Entire text is known and processed at once
▶ No word-by-word prediction

Input shape
RNN layers need 2D input:
▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings could go)
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BiLSTM-Layers

Long Short-Term Memory (LSTM)

▶ Most often used architecture for sequence labeling tasks
▶ Sub type of a recurrent layer
▶ Recurrent layer

▶ Simple neuron, one connection along the sequence
▶ LSTM Hochreiter/Schmidhuber (1997)

▶ A neuron with more internal structure (often called “cell” or “unit”)
▶ Two connections along the sequence
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BiLSTM-Layers

Recurrent Layer

Se
qu

en
ce

X1 Y1

X2 Y2

X3 Y3

X4 Y4

Figure: Recurrent Neural Network
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BiLSTM-Layers

LSTM Layers

Se
qu

en
ce

X1 Y1

X2 Y2

X3 Y3

X4 Y4

Figure: Neural Network with an LSTM Layer

Reiter Contextual Word Embeddings 07.07.2022 28 / 42



BiLSTM-Layers

LSTM Cells

▶ Two connections along the sequence
▶ h: The regular history of outcomes

▶ I.e., the outcome of a neuron is passed into the neuron for the next sequence element
▶ C: A state for the cell

▶ Allows long-term storage

▶ Cell state is controlled within the cell
▶ Forget: Previous state is removed
▶ Input: Current input is (partially) stored in the cell state
▶ Output: How much of the cell state is added to the cell output

▶ All ‘gates’ are controlled by weights, learned during training
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BiLSTM-Layers

An LSTM Cell

Se
qu

en
ce

t
x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

sigma

sigma

sigma

tanh

×

×

×

+

tanh

tanh

activation function
sigmoid: [0; 1]
tanh: [−1; 1]

+ arithmetical operator
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BiLSTM-Layers

An LSTM Cell
with labeled connections

Se
qu

en
ce

t
x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

τ

activation function
σ : [0; 1]
τ : [−1; 1]

+ arithmetical operator
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BiLSTM-Layers

An LSTM Cell
Forget Gate

f(t) = σ
(
w⃗f × (xt + h(t − 1))

)
▶ How much of the cell state do

we forget?
▶ If f(t) = 0, cell state is emptied
▶ w⃗f: Trainable weights for this

gate

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)
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BiLSTM-Layers

An LSTM Cell
Input Gate

How much of the current value is put
into the cell state?

ff(t) = σ
(
w⃗ff × (xt + h(t − 1))

)
C∗(t) = τ (w⃗C × (xt + h(t − 1)))

i(t) = ff(t)× C∗(t)

▶ w⃗: trainable weights

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)
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BiLSTM-Layers

An LSTM Cell
Output Gate

How do we calculate the output(s) of
the cell?
▶ Three outputs:

▶ y(t): regular output for the
next layer

▶ h(t): passed on to the next
sequence element

▶ C(t): new cell state

C(t) = f(t)× C(t − 1) + i(t)
fff(t) = σ

(
w⃗fff × (xt + h(t − 1))

)
y(t) = fff(t)× τ(C(t))

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)
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BiLSTM-Layers

An LSTM Unit

Cell state C(t)
▶ A LSTM unit has a cell state (used for the long-term memory)
▶ Four gates control the state of the cell – each with its own weight

▶ Forget gate f(t): How much of the previous state is kept
▶ f(t) = σ(w⃗f × (x(t) + h(t−1)))

▶ Input gate ff(t), C∗(t), i(t): How much of the current state is stored
▶ ff(t) = σ(w⃗ff × (x(t) + h(t−1))), C∗(t) = τ(w⃗C × (x(t) + h(t−1))), i(t) = ff(t)× C∗(t)

▶ Output gate fff(t): What do we push to the next unit and what do we give out
▶ fff(t) = σ(w⃗fff(x(t) + h(t−1)))
▶ C(t) = f(t)× C(t−1) + i(t)
▶ h(t) = fff(t)× τ(C(t))

▶ Weights to be learned: w⃗f, w⃗ff, w⃗fff, w⃗C (per cell!)
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ELMo

Introduction
▶ Neural network with a BiLSTM architecture
▶ Task: Predict the next word

“Language modelling”
▶ One of the oldest NLP tasks
▶ Application: predictive typing
▶ Goal: p(tk|tk−1, tk−2, tk−3, . . . )

Matthew E. Peters/Mark Neumann/Mohit Iyyer/Matt Gardner/Christopher Clark/Kenton
Lee/Luke Zettlemoyer (2018). “Deep Contextualized Word Representations”. In: Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers). New Orleans,
Louisiana: Association for Computational Linguistics, pp. 2227–2237. doi:
10.18653/v1/N18-1202. url: https://aclanthology.org/N18-1202
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ELMo

ELMo Architecture

X

Character Embeddings

Forward LSTM

Forward LSTM

…

Forward LSTM

L layers

Backward LSTM

Backward LSTM

…

Backward LSTM

Y

⊕ Embeddings

Options
▶ Concatenate all
▶ Add all
▶ Take last
▶ Learn linear combination
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ELMo

ELMo Properties

▶ Embeddings are given in sentence context
▶ Character embeddings at the start: Embeddings for unknown words
▶ Easy to plug into existing architectures

▶ Neural networks / vector representations Modularization!
▶ Three steps in using

▶ Pre-Train on huge, generic corpus (not done by us)
▶ Train language model on large, specific corpus in target domain (optional)
▶ Fine-tune embeddings for a specific task or extract embeddings and use directly
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Summary

Summary

Neural networks
▶ Neural network consists of layers of neurons
▶ Training goal: Find weights, such that the training instances are correctly predicted
▶ Training method: Backpropagation (extension of gradient descent)

Recurrent and LSTM layers
▶ Sequential predictions (e.g. for each token)
▶ LSTM: Complex structure in a cell

ELMo
▶ Based on a language model (predict the next token)
▶ Extract context-specific embeddings
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