Closing Session HS Experimentelles Arbeiten in der Sprachverarbeitung

Nils Reiter nils.reiter@uni-koeln.de

January 26, 2023

Introduction

Two own experiments

 Nils Reiter/Anette Frank (2010). "Identifying Generic Noun Phrases". In: Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. Ed. by Jan Hajič/Sandra Carberry/Stephen Clark/Joakim Nivre. Uppsala, Sweden: Association for Computational Linguistics, pp. 40–49. URL: http://www.aclweb.org/anthology/P10-1005

Original slides from 2010!

Benjamin Krautter/Janis Pagel/Nils Reiter/Marcus Willand (2020). "»[E]in Vater, dächte ich, ist doch immer ein Vater«. Figurentypen und ihre Operationalisierung". In: Zeitschrift für digitale Geisteswissenschaften 5. DOI: 10.17175/2020_007

Section 1

"Identifying Generic Noun Phrases"

Identifying Generic Expressions

Nils Reiter and Anette Frank

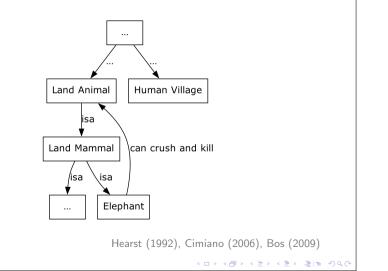
Department of Computational Linguistics Heidelberg University Germany

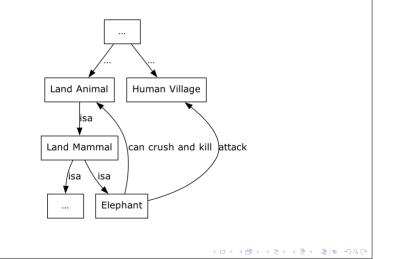
Elephants

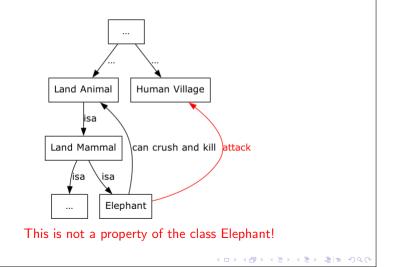
[Elephants] can crush and kill any other land animal [...] In Africa, groups of young teenage elephants attacked human villages after cullings done in the 1970s and 80s.

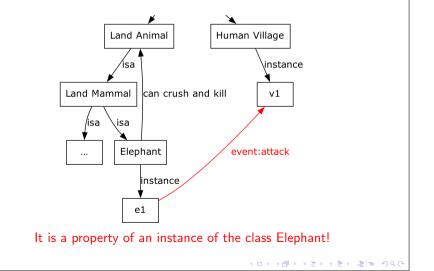
?

▲ロト ▲母ト ▲ヨト ▲ヨト ヨヨ のへで









Starting Point

Knowledge acquisition systems need to be able to distinguish classes and instances, otherwise

Instance-level information is generalized to the class or

◆□▶ ◆□▶ ◆目▶ ◆日▶ 三日 のへで

Class-level knowledge is attached to instances

Starting Point

Knowledge acquisition systems need to be able to distinguish classes and instances, otherwise

Instance-level information is generalized to the class or

Class-level knowledge is attached to instances

 \Rightarrow Identify generic noun phrases

Outline

Motivation

Introduction and Background

Identifying Generic Noun Phrases

Results and Discussion

Outline

Motivation

Introduction and Background

Identifying Generic Noun Phrases

Results and Discussion

Generic Noun Phrases

Refer to a kind or class of individuals

Examples

- ► The lion was the most widespread animal.
- Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)

Generic Sentences

Express rule-like knowledge about habitual actions

Do not express a particular event

Examples

- ► After 1971 [he] also took amphetamines.
- Lions eat up to 30 kg in one sitting.

Krifka et al. (1995)

Co-Occurrence

Example

Lions eat up to 30 kg in one sitting.

- ▶ This is a generic sentence that contains a generic noun phrase
- Both phenomena can (but don't have to) co-occur in a single sentence

Interpretations of Generic Noun Phrases

Quantification

- Quantification over individuals
- Exact determination of the quantifier restriction is extremely difficult
- Quantification over "relevant" or "normal" individuals

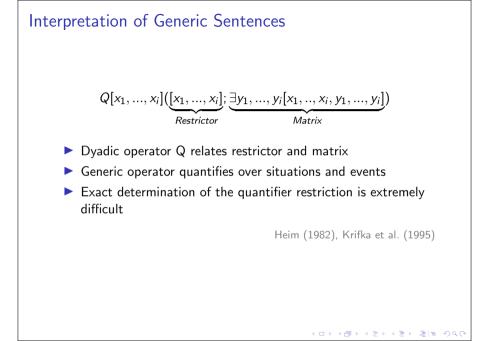
Dahl (1975), Declerck (1991), Cohen (1999)

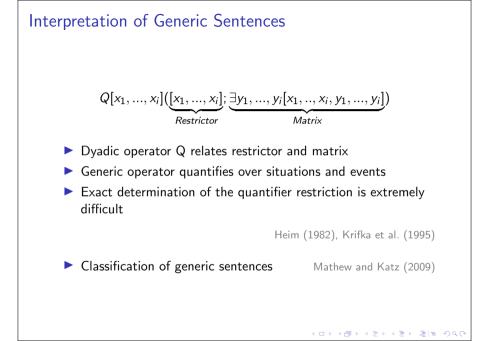
Kind-Referring

- ► A generic NP refers to a kind
- Kinds are individuals that have properties on their own

Carlson (1977)

・ロト・日本・日本・日本・日本・今日・





Characteristics

► No linguistic form of generic expressions

Examples (Noun Phrases)

- ► The lion was the most widespread mammal.
- ► A lioness is weaker [...] than a male.
- Elephants can crush and kill any other land animal.

Examples (Sentences)

- ► John walks to work.
- John walked to work (when he lived in California).
- ► John will walk to work (when he moves to California).

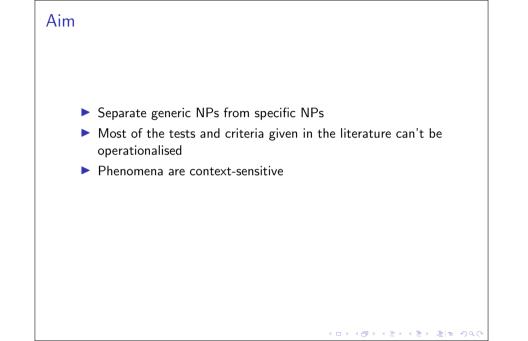
Outline

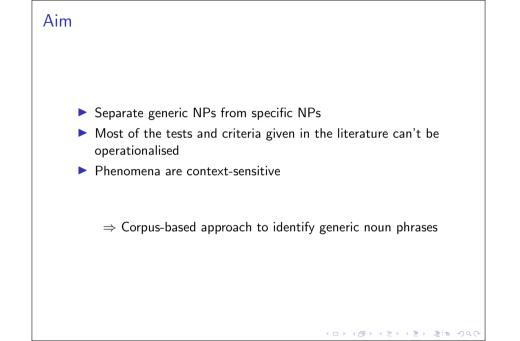
Motivation

Introduction and Background

Identifying Generic Noun Phrases

Results and Discussion





Features

	Syntactic	Semantic		
NP-level	Number, Person, Part of Speech, Determiner Type, Bare Plural	Countability, Granularity, Sense[0-3, Top]		
S-level	Clause.{Part of Speech, Passive, Number of Modifiers}, Depen- dency Relation[0-4], Clause.Adjunct.{Verbal Type, Adverbial Type}, XLE.Quality	Clause.{Tense, Pro- gressive, Perfective, Mood, Pred, Has temporal Modifier}, Clause.Adjunct.{Time, Pred}, Embedding Predi- cate.Pred		

Table: Feature Classes

Feature Selection

Feature Combinations

Each triple, pair and single feature tested in isolation

Ablation Testing

- $1. \ \mbox{A single feature in turn is removed from the feature set}$
- 2. The feature whose omission causes the biggest drop in f-score is considered a strong feature
- 3. Remove strong feature and start over

In the end, we have a list of features sorted by their impact

Experiment: Corpus and Algorithm

Corpus

ACE-2 corpus

Mitchell et al. (2003)

- Newspaper texts
- 40,106 annotated entities
- ▶ 5,303 (13.2 %) marked as generic
- $\blacktriangleright\,$ Balancing training data: $\sim\,$ 10,000 entities for each class
 - Over-sampling generic entities
 - Under-sampling non-generic entities

Experiment: Corpus and Algorithm

Corpus

- ► ACE-2 corpus
- Newspaper texts
- 40,106 annotated entities
- ▶ 5,303 (13.2 %) marked as generic
- \blacktriangleright Balancing training data: \sim 10,000 entities for each class
 - Over-sampling generic entities
 - Under-sampling non-generic entities

Bayesian Network

- Weka implementation of a Bayesian net
- A Bayesian network represents dependencies between random variables as graph edges

Mitchell et al. (2003)

7

Outline

Motivation

Introduction and Background

Identifying Generic Noun Phrases

Results and Discussion

うせん 作詞 ふゆき ふかく 白を

Results of Feature Selection

Feature groups - singles, pairs, triples

 Most high ranking features are syntactic NP-level features (Number, POS, ...)

Few semantic features (Sense, Clause. {Tense, Pred})

Results of Feature Selection

Feature groups - singles, pairs, triples

- Most high ranking features are syntactic NP-level features (Number, POS, ...)
- Few semantic features (Sense, Clause. {Tense, Pred})

Ablation Testing

 Clause-related features and dependency relations appear more often (and earlier) in the ablation results

Results of Feature Selection – Ablation

	Syntactic	Semantic Countability, Granularity, Sense[0], Sense[1-3, Top]		
NP-level	Number, Person, Part of Speech, Determiner Type, Bare Plural			
S-level	Clause.Part of Speech, Clause.{Passive, Number of Modifiers}, Depen- dency Relation[2], Depen- dency Relation[0-1,3-4], Clause.Adjunct.{Verbal Type, Adverbial Type}, XLE.Quality	Clause.{Tense, Pred} Clause.{Progressive, Perfective, Mood, Has temporal Modifier} Clause.Adjunct.{Time, Pred}, Embedding Predi- cate.Pred		

Baselines

Majority Each entity is non-generic

Person Use the feature Person

Suh Results of a pattern-based approach on detection of generic NPs Suh (2006)

		Generic	:		Overall	
	Ρ	R	F	Ρ	R	F
Majority	0	0	0	75.3	86.8	80.6
Person	60.5	10.2	17.5	84.3	87.2	85.7
Suh (2006)	28.9					

Table: Baseline results

Classification Results – Feature Classes

- Unbalanced data: syntactic features of the sentence and the NP perform best
- Balanced data: NP-syntactic features perform best
- All feature classes outperform baselines for the generic class, in terms of f-score

Feature Set		Generic			Overall			
		Ρ	R	F	Ρ	R	F	
Bas	Baseline Person		10.2	17.5	84.3	87.2	85.7	
-le	Syntactic	40.1	66.6	50.1	87.2	82.4	84.7	
Unbal.	Semantic	34.5	56.0	42.7	84.9	80.1	82.4	
	All	37.0	72.1	49.0	80.1	80.1	83.6	
_	NP/Syntactic	35.4	76.3	48.4	87.7	78.5	82.8	
Balanced	S/Syntactic	23.1	77.1	35.6	85.1	63.1	72.5	
lan	Syntactic	30.8	85.3	45.3	88.2	72.8	79.7	
Ba	Semantic	30.1	67.5	41.6	85.5	75.0	79.9	
	All	33.7	81.0	47.6	88.0	76.5	81.8	

Table: Classification results for some feature classes

Classification Results - Feature Selection

- Selecting features helps, results are better
- Ablation testing yields the feature set that outperforms every other feature set

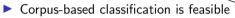
Feature Set			Generic	:	Overall			
		Р	R	F	Р	R	F	
Baseline	Majority Person Suh (2006)	0 <mark>60.5</mark> 28.9	0 10.2	0 17.5	75.3 84.3	86.8 <mark>87.2</mark>	80.6 <mark>85.7</mark>	
Unbal.	5 best single features Feature groups Ablation set	<mark>49.5</mark> 42.7 45.7	37.4 <mark>69.6</mark> 64.8	42.6 52.9 <mark>53.6</mark>	85.3 88.0 87.9	86.7 83.6 85.2	86.0 85.7 <mark>86.5</mark>	
Bal.	5 best single features Feature groups Ablation set	29.7 35.9 <mark>37.0</mark>	71.1 <mark>83.1</mark> 81.9	41.9 50.1 <mark>51.0</mark>	85.9 88.7 88.8	73.9 78.2 79.2	79.5 83.1 <mark>83.7</mark>	

Table: Results of the classification for Feature Selection

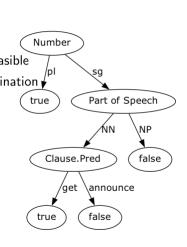
Conclusions

- Corpus-based classification is feasible
- Features from all levels in combination perform best (Sentence vs. NP, Syntax vs. Semantics)
- Contextual factors with impact on the phenomenon can be uncovered

Conclusions



- Features from all levels in combination perform best (Sentence vs. NP, Syntax vs. Semantics)
- Contextual factors with impact on the phenomenon can be uncovered



Section 2

"»[E]in Vater, dächte ich, ist doch immer ein Vater«. Figurentypen und ihre Operationalisierung"

Computerlinguistik im B.A. Informationsverarbeitung

Modul Grundlagen der Computerlinguistik (früher: Computerlinguistische Grundlagen)

- Computerlinguistische Grundlagen (Seminar, Winter, Hermes)
 - Linguistische Grundlagen, Annotation
- Sprachverarbeitung (Vorlesung + Übung, Sommer, Reiter)
 - Quantitative Eigenschaften von Sprache, Machine Learning
- Modul Anwendungen der Computerlinguistik (früher: Angewandte Linguistische Datenverarbeitung)
 - Deep Learning (Übung, Winter, Nester)
 - Deep Learning
 - Experimentelles Arbeiten in der Sprachverarbeitung (Hauptseminar, Winter, Reiter)
 - Experimente in der CL; wo kommen Fortschritt und Erkenntnis her?

Krautter et al. (2020)

Lernziele

- Lesen und verstehen NLP-technischer Forschungsliteratur
- Vertiefung vorhandener NLP-Kenntnisse
- Planung und Durchführung eigener Experimente

Krautter et al. (2020)

Closing

- Wie hat's Ihnen gefallen?
- ► Was nehmen Sie mit?
- Was hat Ihnen gefehlt, was hätten Sie gerne mehr gemacht?

Gute Erholung!

-