Corpora and Basic Word Counting VL Sprachliche Informationsverarbeitung

> Nils Reiter nils.reiter@uni-koeln.de

> > October 27, 2022 Winter term 2022/23

- (Large) collections of linguistic expressions
- Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- Text corpora: Written language
 - File formats: txt, xml, json, ...

(Large) collections of linguistic expressions

- Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- Text corpora: Written language
 - File formats: txt, xml, json, ...
- Why do we look at corpora?

(Large) collections of linguistic expressions

- Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- Text corpora: Written language
 - File formats: txt, xml, json, ...
- Why do we look at corpora?
 - Making statements about language needs to take into account many language expressions
 - We under-estimate creativity, flexibility and productivity of language use
 - \rightarrow Empiricism

Meta data and annotations

Meta data: Data about the data

- Information about the corpus
- Language, date of creation, author(s), publication source, ...
- Machine-readable: XML, JSON, CSV, ...

Meta data and annotations

Meta data: Data about the data

- Information about the corpus
- Language, date of creation, author(s), publication source, ...
- Machine-readable: XML, JSON, CSV, ...

Annotations: Data about parts of the corpus

Examples

- Linguistic annotation: Parts of speech, named entities, syntactic relations, ...
- Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, ...

Meta data and annotations

Meta data: Data about the data

- Information about the corpus
- Language, date of creation, author(s), publication source, ...
- Machine-readable: XML, JSON, CSV, ...

Annotations: Data about parts of the corpus

Examples

- Linguistic annotation: Parts of speech, named entities, syntactic relations, ...
- Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, ...
- Explicit location in the corpus: Document/word/character numbers in text, milliseconds in speech

Preparations (for text corpora)

OCR: Optical Character Recognition

- Convert images (e.g., from a scan) into text
- Huge improvements in last five years

Manning/Schütze (MS99, 123)

Preparations (for text corpora)

OCR: Optical Character Recognition

Manning/Schütze (MS99, 123)

- Convert images (e.g., from a scan) into text
- Huge improvements in last five years
- Encoding: How to specify characters in a computer
 - Simple: ASCII (7 bit per character, $2^7 = 128$ different characters)
 - Outdated: Latin-1 / ISO-8859 (8 bit, $\Rightarrow 256$ diff. characters)
 - Modern: Unicode (e.g., UTF-8)
 - ▶ 1 B/char to 4 B/char
 - 1 112 064 characters can be represented

Tools and Techniques

- Plain text editors
 - We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi

Tools and Techniques

- Plain text editors
 - We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi
- Regular expressions
 - The most important tool for corpus analysis
 - Cleanup (e.g., after scraping a corpus from the web)
 - Analysis (e.g., to find all variants of a word or deal with slang)
 - Usable in <u>all</u>* programming languages and find tools

Tools and Techniques

- Plain text editors
 - We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi
- Regular expressions
 - The most important tool for corpus analysis
 - Cleanup (e.g., after scraping a corpus from the web)
 - Analysis (e.g., to find all variants of a word or deal with slang)
 - Usable in <u>all</u>* programming languages and find tools
- Command line
 - Large corpora often cannot be displayed with GUI tools
 - Command line tools faster and more memory efficient

Tokenization

- Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...

Tokenization

- Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...
- ▶ Naive: Splitting at white space (space, newline, ...)
 - Why naive?

Tokenization

- Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...
- ▶ Naive: Splitting at white space (space, newline, ...)
 - Why naive?
- Solved, but complex
 - E.g., syntactic points vs. morphological points
- Sometimes, shortcuts are ok depends on the use case

Word Counts

Count	Word
585	die
584	und
407	er
404	der
348	zu
311	sich
259	nicht
250	sie
243	in
243	den
233	war
218	Gregor
189	mit
178	das
176	auf
171	es
162	dem
155	hatte
137	ein
136	aber
133	daß
123	als
110	auch
107	Schwester

Word Counts

Count	Word
585	die
584	und
407	er
404	der
348	zu
311	sich
259	nicht
250	sie
243	in
243	den
233	war
218	Gregor
189	mit
178	das
176	auf
171	es
162	dem
155	hatte
137	ein
136	aber
133	daß
123	als
110	auch
107	Schwester

Number of words in a text

- Most frequent words (MFW) are function words
- 'Content words' that appear often indicate text content

Zipf's Law MS99, 23 ff.

- George Kingsley Zipf (1902-1950): American Linguist
- Basic property of human language
 - Frequency distribution of words (in a corpus) is stable
 - Word frequency is inversely proportional to its position in the ranking

$$f \propto rac{1}{r}$$

(there is a constant k, such that $f \times r = k$)

Zipf's Law MS99, 23 ff.

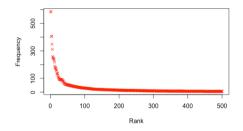


Figure: Words sorted after their frequency (red). Text: Kafka's "Die Verwandlung".

Zipf's Law MS99, 23 ff.

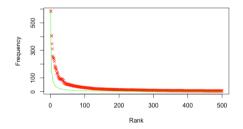


Figure: Words sorted after their frequency (red). Zipf distribution: $y = 600\frac{1}{x}$ (green). Text: Kafka's "Die Verwandlung".

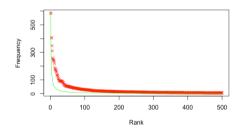


Figure: Words sorted after their frequency (red). Zipf distribution: $y = 600\frac{1}{x}$ (green). Text: Kafka's "Die Verwandlung".

Consequences

- Very few words appear with very high frequency
- The vast majority of words appear only once
 - It's difficult to learn something about these words!

Counting Words

- Absolute numbers are not that interesting
- Insights are only generated through comparison

Abs. number	Word form	Abs. number	Word form
20	women	0	friend
67	woman	2	bath
31	men	11	women
79	family	23	men
82	sister	30	father
83	friend	68	woman
99	bath	83	family
117	father	113	sir
133	man	121	man
144	sir	282	sister

Table: Jane Austens's *Persuasion* (nouns)

Table: Jane Austens's Sense and Sensibility

Corpora and Basic (nouns)

Absolute Numbers

Word	Persuasion	Sense
woman	67	68
women	20	11
man	133	121
men	31	23
sister	82	282

...does it make sense to compare absolute numbers? No.

Absolute Numbers

Word	Persuasion	Sense
woman	67	68
women	20	11
man	133	121
men	31	23
sister	82	282

...does it make sense to compare absolute numbers? No.

- The texts/corpora do not have the same size
- Scaling using their length: Division by the total number of words

Absolute Numbers

Word	Persuasion		Sense	
woman	67	0.00079%	68	0.00055%
women	20	0.00024%	11	0.00009%
man	133	0.00158%	121	0.00100%
men	31	0.00037%	23	0.00019%
sister	82	0.00097%	282	0.00233%

...does it make sense to compare absolute numbers? No.

- The texts/corpora do not have the same size
- Scaling using their length: Division by the total number of words
- ▶ Visible changes: Proportion of "sister": $3.4 \rightarrow 2.4$

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - "In a text that is much shorter, there are much less chances for a certain word to be used."

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - "In a text that is much shorter, there are much less chances for a certain word to be used."

Recipe

- Divide the result of the measurement by the theoretical maximum
- How many chances are there for "sister" to be used?
 - As many as there are words in the text
- Thus, we divide by the total number of words

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - "In a text that is much shorter, there are much less chances for a certain word to be used."

Recipe

- Divide the result of the measurement by the theoretical maximum
- How many chances are there for "sister" to be used?
 - As many as there are words in the text
- Thus, we divide by the total number of words
- It's not always obvious how to scaled
- When reading research: Was it scaled, and how?

Corpora Counting Words Types and Tokens N-Grams

Summary

Exercise

- ▶ If a text has been tokenized, we can access individual units: Tokens
- ▶ Not all tokens are words: Punctuation, detached prefixes, ...

- ▶ If a text has been tokenized, we can access individual units: Tokens
- Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

- ▶ If a text has been tokenized, we can access individual units: Tokens
- Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

Example

the cat chases the mouse

- ▶ If a text has been tokenized, we can access individual units: Tokens
- Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

Example

the cat chases the mouse

- ► Tokens: the, cat, chases, the, mouse
- Types: the, cat, chases, mouse

Type-Token-Ratio (TTR)

What is the relation between number of tokens and number of types?

Type-Token-Ratio (TTR)

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!

Type-Token-Ratio (TTR)

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - "the dog barks loudly ."

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - "the dog barks loudly ."
- Construct a sentence with 5 tokens and 4 types!

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - "the dog barks loudly ."
- Construct a sentence with 5 tokens and 4 types!
 - "the cat loves the mouse"

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - "the dog barks loudly ."
- Construct a sentence with 5 tokens and 4 types!
 - "the cat loves the mouse"
- Construct a sentence with 5 tokens and 1 type!

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - "the dog barks loudly ."
- Construct a sentence with 5 tokens and 4 types!
 - "the cat loves the mouse"
- Construct a sentence with 5 tokens and 1 type!
 - "dog dog dog dog dog" (not really a sentence ...)
 - It's not possible to create a 'proper' sentence with 1 type

Measure for 'lexical variability'

 $TTR = \frac{\text{number of types}}{\text{number of tokens}}$

► Max value: 1

Measure for 'lexical variability'

 $TTR = \frac{\text{number of types}}{\text{number of tokens}}$

Max value: 1 (there cannot be more types than tokens)
Min value: ϵ = 1/(very large number)

Measure for 'lexical variability'

 $TTR = \frac{\text{number of types}}{\text{number of tokens}}$

- Max value: 1 (there cannot be more types than tokens)
- Min value: $\epsilon = \frac{1}{\text{very large number}}$
- Real (German) texts
 - ▶ 10000 words (Wikipedia): $\frac{4021}{10000} = 0.4021$

TTR and Text Length

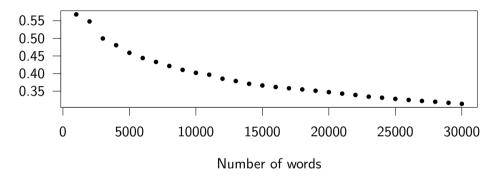


Figure: Type-Token-Ratio for increasing text lengths

TTR and Text Length

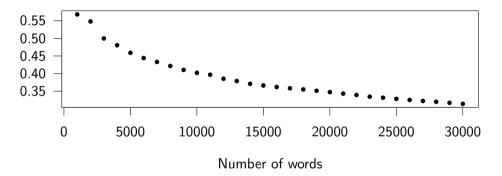


Figure: Type-Token-Ratio for increasing text lengths

- ▶ Increasing length \rightarrow lower TTR!
- ► Why?

Reiter

TTR and Text Length

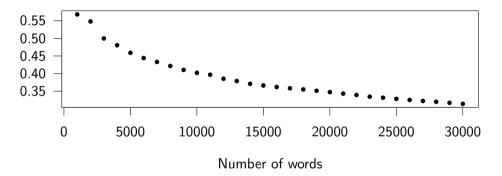


Figure: Type-Token-Ratio for increasing text lengths

- Increasing length \rightarrow lower TTR!
- Why?- Zipf!

Reiter

Corpora and Basic Word Counting

WS 22/23

Standardized TTR (STTR)

- Calculate TTR over windows of fixed size (e.g., 1000 words)
- Calculate arithmetic mean over TTR values

Standardized TTR (STTR)

- Calculate TTR over windows of fixed size (e.g., 1000 words)
- Calculate arithmetic mean over TTR values

 $TTR_n = \frac{\text{number of types in } n\text{th window}}{\text{number of tokens in } n\text{th window}}$

Standardized TTR (STTR)

- Calculate TTR over windows of fixed size (e.g., 1000 words)
- Calculate arithmetic mean over TTR values

$$TTR_n = \frac{\text{number of types in } n\text{th window}}{\text{number of tokens in } n\text{th window}}$$
$$STTR = \frac{1}{w} \sum_{i=0}^{w} TTR_i$$

n-grams

- So far: Individual tokens
- But: Context is important for linguistic expressions

n-grams

- So far: Individual tokens
- But: Context is important for linguistic expressions
- ▶ *n*-gram: A list of *n* directly adjacent tokens
 - Popular choices for n: 2 to 4

n-grams

- So far: Individual tokens
- But: Context is important for linguistic expressions
- *n*-gram: A list of *n* directly adjacent tokens
 - Popular choices for n: 2 to 4

Example

The dog barks.

- 1-grams: "the", "dog", "barks", "."
- 2-grams (bigrams): "the dog", "dog barks", "barks."
- 3-grams (trigrams): "the dog barks", "dog barks."

Counting Bigrams

Simple idea: We count bigrams (i.e., pairs of subsequent tokens)

Corpora N-Grams

		Bigram	Frequency
Counting Bigrams		wurde er	630
0 - 0 - 0		in der	623
		wurde die	501
		an der	386
		mit dem	363
		in die	362
		in den	329
		mit der	312
		wurde das	291
Simple idea, We count higrams (i.e., pairs of subsequent takens)		wurde der	291
Simple idea: We count bigrams (i.e., pairs of subsequent tokens)			248
	(first 10000 sentences)	für die er in	193
Corpus: vvikipedia pages (war er	181
		von der	174
		wo er	169
		bei den	168
		bei der	166
		und wurde	165
		an die	161
		und die	150
		er die	143
		er als	142
		er mit	142
		wurden die	142
		auf dem	135
		für den	133
		wurde sie	127
Reiter	Corpora and Basic Word Counting	er zum WC 22/23 auf der	123 1220 / 24

Corpora N-Grams

	Bigram	Frequency
	wurde er	630
	in der	623
	wurde die	501
	an der	386
	mit dem	363
	in die	362
	in den	329
	mit der	312
ens)	wurde das	291
	wurde der	291
	für die	248
	er in	193
	war er	181
	von der	174
	wo er	169
	bei den	168
	bei der	166
	und wurde	165
	an die	161
	und die	150
	er die	143
	er als	142
	er mit	142
	wurden die	142
	auf dem	135
	für den	133
	wurde sie	127
	er zum	123
	WS der ²³	1220/2

Counting Bigrams

- Simple idea: We count bigrams (i.e., pairs of subsequent tokens
- ► Corpus: Wikipedia pages (first 10000 sentences)
- Again, there are a lot of function words. Why?

Corpora and Basic Word Counting

Corpora N-Grams

	Bigram	Frequency
	wurde er	630
	in der	623
	wurde die	501
	an der	386
	mit dem	363
	in die	362
	in den	329
	mit der	312
	wurde das	291
anc)	wurde der	291
ens)	für die	248
	er in	193
	war er	181
	von der	174
	wo er	169
abor	bei den	168
gher	bei der	166
	und wurde	165
	an die	161
	und die	150
	er die	143
	er als	142
	er mit	142
	wurden die	142
	auf dem	135
	für den	133
	wurde sie	127
	er zum	123
	er zum auf der ²³	1220/2

Counting Bigrams

- Simple idea: We count bigrams (i.e., pairs of subsequent tokens
- Corpus: Wikipedia pages (first 10000 sentences)
- Again, there are a lot of function words. Why?
- Zipf's law: Two words that are highly frequent have much higher chance to co-occur with high frequency

Corpora and Basic Word Counting

Section 2

Summary

Summary

Summary

- Language data: Corpora
- Most frequent words are not the most informative words
- Zipf distribution
- Type-token ratio as a measure of lexical diversity
- *n*-grams: Look at multiple tokens at once

Section 3

Exercise

Übung 1

Besorgen Sie sich auf https://opendiscourse.de/ Reden von zwei verschiedenen Politiker:innen aus unterschiedlichen Parteien, so dass sie insgesamt pro Person mehr als 10000 Wörter haben. Schreiben Sie dann in einer Programmiersprache Ihrer Wahl ein Programm, das die type-token-ratio für beide berechnet. Abgabe in Ilias bis zum 09.11.