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Introduction
▶ One of the oldest NLP tasks

▶ Long before predictive typing on smart phones became a thing
▶ Language model (LM) predicts the next word, given previous words (history)

▶ Bidirectional LM: Previous and following words (context)
▶ Formally: p(word|history)

Example
Sue swallowed the large green

Reading
Christopher D. Manning/Hinrich Schütze (1999). Foundations of Statistical Natural Language
Processing. Cambridge, Massachusetts and London, England: MIT Press, Ch. 6.1–6.2. Ilias
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History

▶ Not all textual histories can be treated individually
▶ We couldn’t predict anything on completely new histories
▶ Chance of a text re-appearing is astronomically slim

▶ Predicting the next word on unseen sentences requires generalization

▶ Instances of textual histories need to be grouped together
▶ Manning/Schütze (MS99, 192): “Equivalence Classes”

Equivalence classes More discriminationMore generalization moreless

Figure: Compromise between generalization and discrimination

Reiter Language Modeling WS 22/23 4 / 19



History

▶ Not all textual histories can be treated individually
▶ We couldn’t predict anything on completely new histories
▶ Chance of a text re-appearing is astronomically slim

▶ Predicting the next word on unseen sentences requires generalization
▶ Instances of textual histories need to be grouped together

▶ Manning/Schütze (MS99, 192): “Equivalence Classes”

Equivalence classes More discriminationMore generalization moreless

Figure: Compromise between generalization and discrimination

Reiter Language Modeling WS 22/23 4 / 19



History

▶ Not all textual histories can be treated individually
▶ We couldn’t predict anything on completely new histories
▶ Chance of a text re-appearing is astronomically slim

▶ Predicting the next word on unseen sentences requires generalization
▶ Instances of textual histories need to be grouped together

▶ Manning/Schütze (MS99, 192): “Equivalence Classes”

Equivalence classes More discriminationMore generalization moreless

Figure: Compromise between generalization and discrimination

Reiter Language Modeling WS 22/23 4 / 19



Forming Equivalence Classes
Different strategies

▶ Stemming/lemmatization: Don’t look at word forms, look at lemmas or stems
▶ E.e.: p(bark|the dog) instead of p(barks|The dog)

▶ Selected history: Only look at selected word classes
▶ Content words like nouns, verbs, adjectives and adverbs
▶ E.g., p(barks|dog) instead of p(barks|The dog)

▶ Both require linguistic pre-analysis of the text
▶ Time-consuming and error-prone (on a large scale)

▶ Limit history: Only look at the last n words
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Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example

Reiter Language Modeling WS 22/23 6 / 19

https://en.wikipedia.org/wiki/Markov_property


Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example

Reiter Language Modeling WS 22/23 6 / 19

https://en.wikipedia.org/wiki/Markov_property


Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example
Bigram model: “green ”
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Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example
Trigram model: “large green ”
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Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example
4-gram model: “the large green ”
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Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example
5-gram model: “swallowed the large green ”
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Markov Assumption

▶ Assumption: Only the local context influences the next word Markov property

▶ n-gram model: Only the last n − 1 words are looked at to predict the nth word
▶ Bigram model: p(w2|⟨w1⟩)
▶ Trigram model: p(w3|⟨w1,w2⟩)
▶ 4-gram model: p(w4|⟨w1,w2,w3⟩)

Example
6-gram model: “Sue swallowed the large green ”
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Increasing n

▶ The higher n, the better?
▶ Storage and training time increases

▶ Number of parameters: Number of numbers (frequencies/probabilities) we need to store
separately

▶ Assuming a vocabulary of 20 000 words (= types) Rechtschreibduden: 140 000

▶ Bigram model: 20 0002 = 400 000 000 parameters

(= ca. 50 MB)

▶ Trigram model: 20 0003 = 8000 000 000 000 = 8× 1012 parameters

(= ca. 8 GB)

▶ 4-gram model: 20 0004 = 1.6× 1017 parameters

(= ca. 20 PB)
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Again, a Compromise

▶ Longer n-grams would give better predictions
▶ Shorter n-grams would be easier/faster to train and use

▶ Common: n = 2 or n = 3
▶ Trigrams are surprisingly good at predicting the next word!
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▶ Where do we actually get these probabilities from?
▶ Corpora.

▶ Training
▶ Count frequences of features from data
▶ Convert them into probabilities, maybe apply mathematical transformations

▶ Definition of conditional probabilities:

p(wn|⟨w1, . . . ,wn−1⟩) =
p(⟨w1, . . . ,wn⟩)

p(⟨w1, . . . ,wn−1⟩)
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Maximum Likelihood Estimation (MLE)

▶ Parameters that maximize probability on the training corpus
▶ I.e., use the relative frequency from the training corpus as probability

p(⟨w1, . . . ,wn⟩) =
c(⟨w1, . . . ,wn⟩)

N

p(wn|⟨w1, . . .wn−1) =
p(⟨w1, . . . ,wn⟩)

p(⟨w1, . . . ,wn−1⟩)
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demo



Maximum Likelihood Estimation (MLE)
Example

History wn Count
Bier und Wein 4
Bier und Schnaps 3
Bier und Bratwürsten 1
Bier und Männerschweiß 1
Bier und nichtalkoholischen 1
… … 1

Bier und 29

p(Bier und) =
22

1880232

p(Wein|Bier und) =
p(Bier und Wein)

p(Bier und)

=
4

1880232
22

1880232

=
4

1880232
× 1880232

22

=
4

22
= 0.1818
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Application
▶ Training corpus used for estimating probability
▶ Test/application corpus used for using probability
▶ Never use the same corpus for training and testing

▶ After having trained, we can check how probable a new document/corpus is (=
test/application)

Example

p(Ich trinke gerne Bier und Wein) = p(Ich|SYM SYM)× p(trinke|Ich SYM)

× p(gerne|Ich trinke)× p(Bier|trinke gerne)
× p(und|gerne Bier)× p(Wein|Bier und)
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Maximum Likelihood Estimation (MLE)
Drawbacks

▶ What happens with words not in the training corpus? Zero probability
▶ ‘out of vocabulary’ (OOV)

▶ Because of multiplication, everything will be zero

▶ There will be OOV words – because Zipf
▶ MLE conceptually important, but rarely used in NLP
⇒ We need another estimator for the probability
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Lidstone’s Law

▶ Core problem: All probability mass is used on words in vocabulary
▶ Nothing left for OOV words in test/application
▶ OOV words need to receive a probability > 0

p(⟨w1, . . .wn⟩) =
c(⟨w1, . . .wn⟩) + λ

N + Bλ

▶ B: Number of different n-grams (i.e., n-gram types)
▶ λ: Parameter set to control how much mass remains for OOV words

▶ Typical setting: λ = 1
2 (for reasons see MS99, 204)
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Smoothing

▶ Lidstone’s law is a ‘smoothing’ technique
▶ Goal

▶ Prevent zero probabilities
▶ Reserve some amount of probability mass for OOV words

▶ Different strategies
▶ Often need for fine-tuning (e.g., what value to we use for λ?)
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Neural Language Models

▶ Based on neural networks
▶ Efficient matrix handling
▶ Bidirectional
▶ Use of sub words
▶ Attention: Not all contextual words are equally important
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Summary

▶ Language modeling
▶ Given some history, predict the next word
▶ Use cases: Smart phone, …
▶ Maximum Likelihood estimation: Easy, but problematic
▶ Lidstone’s Law: Smoothing

▶ Other smoothing techniques exist
▶ Different data sets for different purposes

▶ Cross validation
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