Language Modeling VL Sprachliche Informationsverarbeitung

Nils Reiter nils.reiter@uni-koeln.de

> November 3, 2022 Winter term 2022/23

Introduction

- One of the oldest NLP tasks
 - Long before predictive typing on smart phones became a thing
- Language model (LM) predicts the next word, given previous words (history)
 - Bidirectional LM: Previous and following words (context)
- ► Formally: *p*(word|history)

Introduction

- One of the oldest NLP tasks
 - Long before predictive typing on smart phones became a thing
- Language model (LM) predicts the next word, given previous words (history)
 - Bidirectional LM: Previous and following words (context)
- ► Formally: *p*(word|history)

Example

Sue swallowed the large green ____

Introduction

- One of the oldest NLP tasks
 - Long before predictive typing on smart phones became a thing
- Language model (LM) predicts the next word, given previous words (history)
 - Bidirectional LM: Previous and following words (context)

► Formally: *p*(word|history)

Example

Sue swallowed the large green ____

Reading

Christopher D. Manning/Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press, Ch. 6.1–6.2.

History

- Not all textual histories can be treated individually
 - We couldn't predict anything on completely new histories
 - Chance of a text re-appearing is astronomically slim
- Predicting the next word on unseen sentences requires generalization

History

- Not all textual histories can be treated individually
 - We couldn't predict anything on completely new histories
 - Chance of a text re-appearing is astronomically slim
- Predicting the next word on unseen sentences requires generalization
- Instances of textual histories need to be grouped together
 - Manning/Schütze (MS99, 192): "Equivalence Classes"

History

Not all textual histories can be treated individually

- We couldn't predict anything on completely new histories
- Chance of a text re-appearing is astronomically slim
- Predicting the next word on unseen sentences requires generalization
- Instances of textual histories need to be grouped together
 - Manning/Schütze (MS99, 192): "Equivalence Classes"

More generalization \leftarrow Equivalence classes \rightarrow More discrimination

Figure: Compromise between generalization and discrimination

Different strategies

Stemming/lemmatization: Don't look at word forms, look at lemmas or stems
 E.e.: p(bark|the dog) instead of p(barks|The dog)

Different strategies

- Stemming/lemmatization: Don't look at word forms, look at lemmas or stems
 - E.e.: p(bark|the dog) instead of p(barks|The dog)
- Selected history: Only look at selected word classes
 - Content words like nouns, verbs, adjectives and adverbs
 - E.g., p(barks|dog) instead of p(barks|The dog)

Different strategies

- Stemming/lemmatization: Don't look at word forms, look at lemmas or stems
 - E.e.: p(bark|the dog) instead of p(barks|The dog)
- Selected history: Only look at selected word classes
 - Content words like nouns, verbs, adjectives and adverbs
 - E.g., p(barks|dog) instead of p(barks|The dog)
- Both require linguistic pre-analysis of the text
 - Time-consuming and error-prone (on a large scale)

Different strategies

- Stemming/lemmatization: Don't look at word forms, look at lemmas or stems
 - E.e.: p(bark|the dog) instead of p(barks|The dog)
- Selected history: Only look at selected word classes
 - Content words like nouns, verbs, adjectives and adverbs
 - E.g., p(barks|dog) instead of p(barks|The dog)
- Both require linguistic pre-analysis of the text
 - Time-consuming and error-prone (on a large scale)
- Limit history: Only look at the last n words

Assumption: Only the local context influences the next word

WMarkov property

Assumption: Only the local context influences the next word

Markov Assumption

WMarkov property

- ▶ *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2 \rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Assumption: Only the local context influences the next word

WMarkov property

- \blacktriangleright *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2\rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Example

Bigram model: "green ____"

Assumption: Only the local context influences the next word

WMarkov property

- \blacktriangleright *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2\rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Example

Trigram model: "large green ____"

Assumption: Only the local context influences the next word

WMarkov property

- \blacktriangleright *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2\rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Example

4-gram model: "the large green ____"

Assumption: Only the local context influences the next word

WMarkov property

- \blacktriangleright *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2\rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Example

5-gram model: "swallowed the large green ____"

Assumption: Only the local context influences the next word

WMarkov property

- \blacktriangleright *n*-gram model: Only the last n-1 words are looked at to predict the *n*th word
 - Bigram model: $p(w_2|\langle w_1 \rangle)$
 - Trigram model: $p(w_3|\langle w_1, w_2\rangle)$
 - 4-gram model: $p(w_4|\langle w_1, w_2, w_3 \rangle)$

Example

6-gram model: "Sue swallowed the large green ____"

al 🕆 🕞

Cancel

18:44

New Message

То

Cc/Bcc, From: nils.reiter@uni-koeln.de

Subject:

Die sind aber nicht mehr so viel Spaß gemacht haben und dann haben die Kinder ja auch nicht so viele Dinge zu machen

I have to be at the house by about an early afternoon but I'm going back in a bit and then I'll head back home to get a drink 🙀

	and		а			water		
q	w	e	r t	:)	/ ι	1	i o	р
а	s	d	f	g	h	j	k	L
\diamond	z	x	с	v	b	n	m	\bigotimes
123	٢	space			return			
							ļ	Q,

Die sind aber nicht mehr so viel Spaß gemacht haben und dann haben die Kinder ja auch nicht so viele Dinge zu machen

I have to be at the house by about an early afternoon but I'm going back in a bit and then I'll head back home to get a drink

- ▶ The higher *n*, the better?
- Storage and training time increases
 - Number of parameters: Number of numbers (frequencies/probabilities) we need to store separately

- The higher n, the better?
- Storage and training time increases
 - Number of parameters: Number of numbers (frequencies/probabilities) we need to store separately
- Assuming a vocabulary of 20000 words (= types)
 - **b** Bigram model: $20\,000^2 = 400\,000\,000$ parameters
 - Trigram model: $20\,000^3 = 8\,000\,000\,000\,000 = 8 \times 10^{12}$ parameters
 - ▶ 4-gram model: $20000^4 = 1.6 \times 10^{17}$ parameters

Rechtschreibduden: 140 000

- The higher n, the better?
- Storage and training time increases
 - Number of parameters: Number of numbers (frequencies/probabilities) we need to store separately
- Assuming a vocabulary of 20 000 words (= types)

Rechtschreibduden: 140000

- ▶ Bigram model: $20\,000^2 = 400\,000\,000$ parameters (= ca. 50 MB)
- Trigram model: $20\,000^3 = 8\,000\,000\,000\,000 = 8 \times 10^{12}$ parameters (= ca. 8 GB)
- ▶ 4-gram model: $20\,000^4 = 1.6 \times 10^{17}$ parameters (= ca. 20 PB)

Again, a Compromise

- Longer n-grams would give better predictions
- Shorter *n*-grams would be easier/faster to train and use

Again, a Compromise

- Longer n-grams would give better predictions
- Shorter *n*-grams would be easier/faster to train and use
- Common: n = 2 or n = 3
 - Trigrams are surprisingly good at predicting the next word!

- Where do we actually get these probabilities from?
 - Corpora.

- Where do we actually get these probabilities from?
 - Corpora.
- Training
 - Count frequences of features from data
 - Convert them into probabilities, maybe apply mathematical transformations

- Where do we actually get these probabilities from?
 - Corpora.
- Training
 - Count frequences of features from data
 - Convert them into probabilities, maybe apply mathematical transformations
- Definition of conditional probabilities:

$$p(w_n|\langle w_1,\ldots,w_{n-1}\rangle) = \frac{p(\langle w_1,\ldots,w_n\rangle)}{p(\langle w_1,\ldots,w_{n-1}\rangle)}$$

Maximum Likelihood Estimation (MLE)

- Parameters that maximize probability on the training corpus
- I.e., use the relative frequency from the training corpus as probability

$$p(\langle w_1, \ldots, w_n \rangle) = \frac{c(\langle w_1, \ldots, w_n \rangle)}{N}$$

Maximum Likelihood Estimation (MLE)

- Parameters that maximize probability on the training corpus
- I.e., use the relative frequency from the training corpus as probability

$$p(\langle w_1, \dots, w_n \rangle) = \frac{c(\langle w_1, \dots, w_n \rangle)}{N}$$
$$p(w_n | \langle w_1, \dots, w_{n-1} \rangle) = \frac{p(\langle w_1, \dots, w_n \rangle)}{p(\langle w_1, \dots, w_{n-1} \rangle)}$$

demo

Maximum Likelihood Estimation (MLE) Example

History	w_n	Count
Bier und	Wein	4
Bier und	Schnaps	3
Bier und	Bratwürsten	1
Bier und	Männerschweiß	1
Bier und	nichtalkoholischen	1
		1
Bier	und	29

Maximum Likelihood Estimation (MLE) Example

History	w_n	Count	p(Bie	
Bier und	Wein	4	n(Wein Ri	
Bier und	Schnaps	3	$p(\mathbf{Wein} \mathbf{D})$	
Bier und	Bratwürsten	1		
Bier und	Männerschweiß	1		
Bier und	nichtalkoholischen	1		
		1		
Bier	und	29		

(Bier und) =
$$\frac{22}{1880232}$$

(Bier und) = $\frac{p(\text{Bier und Wein})}{p(\text{Bier und})}$
= $\frac{\frac{4}{1880232}}{\frac{22}{1880232}}$
= $\frac{4}{1880232} \times \frac{1880232}{22}$
= $\frac{4}{22} = 0.1818$

Application

- Training corpus used for estimating probability
- Test/application corpus used for using probability
- Never use the same corpus for training and testing

Application

- Training corpus used for estimating probability
- Test/application corpus used for using probability
- Never use the same corpus for training and testing
- After having trained, we can check how probable a new document/corpus is (= test/application)

Example

$p(\mathsf{Ich trinke gerne Bier und Wein}) \ = \ p(\mathsf{Ich}|\mathsf{SYM SYM}) \times p(\mathsf{trinke}|\mathsf{Ich SYM})$

- $\times \quad p(\texttt{gerne}|\texttt{Ich trinke}) \times p(\texttt{Bier}|\texttt{trinke gerne})$
- $\times p(und|gerne Bier) \times p(Wein|Bier und)$

Maximum Likelihood Estimation (MLE) Drawbacks

What happens with words not in the training corpus? Zero probability

- 'out of vocabulary' (OOV)
- Because of multiplication, everything will be zero

Maximum Likelihood Estimation (MLE) Drawbacks

- What happens with words not in the training corpus? Zero probability
 - 'out of vocabulary' (OOV)
- Because of multiplication, everything will be zero
- There will be OOV words because Zipf
- MLE conceptually important, but rarely used in NLP
- \Rightarrow We need another estimator for the probability

Lidstone's Law

- ► Core problem: All probability mass is used on words in vocabulary
- Nothing left for OOV words in test/application
- \blacktriangleright OOV words need to receive a probability > 0

Lidstone's Law

- Core problem: All probability mass is used on words in vocabulary
- Nothing left for OOV words in test/application
- OOV words need to receive a probability > 0

$$p(\langle w_1, \dots w_n
angle) = rac{c(\langle w_1, \dots w_n
angle) + \lambda}{N + B \lambda}$$

Lidstone's Law

- ► Core problem: All probability mass is used on words in vocabulary
- Nothing left for OOV words in test/application
- OOV words need to receive a probability > 0

$$p(\langle w_1, \dots, w_n \rangle) = \frac{c(\langle w_1, \dots, w_n \rangle) + \lambda}{N + B\lambda}$$

- ▶ *B*: Number of different *n*-grams (i.e., *n*-gram types)
- > λ : Parameter set to control how much mass remains for OOV words
 - Typical setting: $\lambda = \frac{1}{2}$ (for reasons see MS99, 204)

Smoothing

Lidstone's law is a 'smoothing' technique

Goal

- Prevent zero probabilities
- Reserve some amount of probability mass for OOV words

Smoothing

Lidstone's law is a 'smoothing' technique

Goal

- Prevent zero probabilities
- Reserve some amount of probability mass for OOV words
- Different strategies
 - Often need for fine-tuning (e.g., what value to we use for λ ?)

Neural Language Models

- Based on neural networks
- Efficient matrix handling
- Bidirectional
- Use of sub words
- Attention: Not all contextual words are equally important

- Language modeling
 - Given some history, predict the next word
 - Use cases: Smart phone, ...
 - Maximum Likelihood estimation: Easy, but problematic
 - Lidstone's Law: Smoothing
 - Other smoothing techniques exist
- Different data sets for different purposes
 - Cross validation