Machine Learning 1: Naive Bayes

VL Sprachliche Informationsverarbeitung

Nils Reiter nils.reiter@uni-koeln.de

November 24, 2022 Winter term 2022/23

Introduction

- ► Probabilistic classification algorithm
- ► Makes independence assumption about features 'naive'
- Reading

JM19, 56 ff.

Introduction

- ▶ Probabilistic classification algorithm
- ▶ Makes independence assumption about features 'naive'
- Reading

JM19, 56 ff.

► Nice intro to Bayesian statistics by Matt Parker and Hannah Fry https://www.youtube.com/watch?v=7GgLSnQ48os

Section 1

Probabilities

Basics: Cards

- \triangleright 32 cards Ω (sample space)
- ▶ 4 'colors': $C = \{\clubsuit, \spadesuit, \diamondsuit, \heartsuit\}$
- ▶ 8 values: $V = \{7, 8, 9, 10, J, Q, K, A\}$

Individual cards ('outcomes') are denoted with value and color: $8\heartsuit$

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- ▶ Events will be denoted with *E*

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

• "We draw a heart eight" – $E = \{8\heartsuit\}$

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond"

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- lacktriangle "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- "We draw a queen"

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - \blacktriangleright There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7 \diamondsuit, 8 \diamondsuit, 9 \diamondsuit, 10 \diamondsuit, J \diamondsuit, Q \diamondsuit, K \diamondsuit, A \diamondsuit\}$
- ▶ "We draw a queen" $-E = \{Q\clubsuit, Q\spadesuit, Q\diamondsuit, Q\heartsuit\}$
- "We draw a heart eight or diamond ten"

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- "We draw a heart eight or diamond ten" $E = \{8\heartsuit, 10\diamondsuit\}$
- "We draw any card"

Events

- ► Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- lacktriangle An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- "We draw a heart eight or diamond ten" $E = \{8\heartsuit, 10\diamondsuit\}$
- "We draw any card" $E = \Omega$

Probabilities

- ▶ Probability p(E): Likelihood, that a certain event $(E \subset \Omega)$ happens
 - ▶ $0 \le p \le 1$
 - ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
 - ightharpoonup p(E) = 0.000001: Very unlikely event

Probabilities

- ▶ Probability p(E): Likelihood, that a certain event $(E \subset \Omega)$ happens
 - ▶ $0 \le p \le 1$
 - ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
 - p(E) = 0.000001: Very unlikely event

- ▶ If all outcomes are equally likely: $p(E) = \frac{|E|}{|\Omega|}$
- ▶ $p({8\heartsuit}) = \frac{1}{32}$
- ► $p({9\clubsuit, 9\spadesuit, 9\diamondsuit, 9\heartsuit}) = \frac{4}{32}$
- $ightharpoonup p(\Omega) = 1$ (must happen, certain event)

Probability and Relative Frequency

- ▶ Probability *p*: Theoretical concept, idealisation
 - Expectation
- ▶ Relative Frequency *f*: Concrete measure
 - Normalised number of observed events
 - ► E.g., after 10 times drawing a card (with returning and shuffling), we counted the event ♠ eight times: $f(\{x♠\}) = \frac{8}{10}$
- ▶ For large numbers of drawings, relative frequency approximates the probability
 - ightharpoonup $\lim_{\infty} f = p$

Probability and Relative Frequency

- Probability p: Theoretical concept, idealisation
 - Expectation
- Relative Frequency f: Concrete measure
 - Normalised number of observed events
 - ► E.g., after 10 times drawing a card (with returning and shuffling), we counted the event ♠ eight times: $f(\{x♠\}) = \frac{8}{10}$
- ► For large numbers of drawings, relative frequency approximates the probability
 - $ightharpoonup \lim_{\infty} f = p$
- ▶ In practice, we will often use relative frequencies as probabilities
- ► This establishes assumptions:
 - ▶ Data set is representative of the real world
 - ▶ We make a lot of observations (the more, the better we approximate real probabilities)

Joint Probability (Independent Events)

- ▶ We are often interested in multiple events (and their relation)
- \blacktriangleright *E*: We draw 8 \heartsuit two times in a row (putting the first card back)
 - $ightharpoonup E_1$: First card is $8\heartsuit$
 - \blacktriangleright E_2 : Second card is $8\heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$

Joint Probability (Independent Events)

- ▶ We are often interested in multiple events (and their relation)
- ightharpoonup E: We draw $8\heartsuit$ two times in a row (putting the first card back)
 - ▶ E_1 : First card is $8\heartsuit$
 - \blacktriangleright E_2 : Second card is $8\heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- \triangleright E: We draw \heartsuit two times in a row (putting the first card back)
 - $ightharpoonup E_1$: First card is $X \heartsuit$
 - \blacktriangleright E_2 : Second card is $X \heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$

Joint Probability (Independent Events)

- ▶ We are often interested in multiple events (and their relation)
- \blacktriangleright *E*: We draw 8 \heartsuit two times in a row (putting the first card back)
 - $ightharpoonup E_1$: First card is $8\heartsuit$
 - \blacktriangleright E_2 : Second card is $8\heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- ightharpoonup E: We draw \heartsuit two times in a row (putting the first card back)
 - $ightharpoonup E_1$: First card is $X \heartsuit$
 - \blacktriangleright E_2 : Second card is $X \heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$
- ► These events are independent
 - because we return and re-shuffle the cards all the time
 - ▶ Drawing 8♥ the first time has no influence on the second drawing

Basics I

Conditional Probability (Dependent Events)

- ▶ We no longer return the card
- \blacktriangleright E: We draw $8\heartsuit$ two times in a row
 - $ightharpoonup E_1$: First card is $8\heartsuit$
 - \blacktriangleright E_2 : Second card is $8\heartsuit$ (without putting the first card back)
 - $p(E_1, E_2) = p(E_1) * p(E_2)$
 - ► This no longer works, because the events are not independent
 - ▶ There is only one $8\heartsuit$ in the game, and $p(E_2)$ has to take into account that it might be gone already
 - ► This is expressed with the notion of conditional probability
 - $p(E_1, E_2) = p(E_1) * p(E_2|E_1)$
 - $p(E_2|E_1) = 0$, therefore $p(E_1, E_2) = 0$

Basics II

Conditional Probability (Dependent Events)

- ▶ E: We draw \heartsuit first (E_1) , followed by:
 - \triangleright E_2 : Second card is $X \diamondsuit$
 - \triangleright E_3 : Second card is $X \heartsuit$
 - $p(E_1, E_2) = p(E_1) * p(E_2|E_1) = \frac{8}{32} * \frac{8}{31} = 0.064$ $p(E_1, E_3) = p(E_1) * p(E_3|E_1) = \frac{8}{22} * \frac{7}{21} = 0.056$

Example

Relation between hair color H and preferred wake-up time W

(all numbers are made up.)

$\downarrow W \ / \ H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

Example

Relation between hair color H and preferred wake-up time W

(all numbers are made up.)

$\downarrow W / H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

▶ If we pick a random person, what's the probability that this person has brown hair?

$$p(H = brown) = ?$$

Example

Relation between hair color H and preferred wake-up time W

(all numbers are made up.)

$\downarrow W \; / \; H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

$$\begin{array}{ll} p(H=\text{brown}) = \frac{50}{65} & p(H=\text{red}) = \frac{15}{65} \\ p(W=\text{early}) = \frac{30}{65} & p(W=\text{late}) = \frac{35}{65} \end{array} \right\} \text{sums per row or column}$$

Example

Relation between hair color H and preferred wake-up time \ensuremath{W}

(all numbers are made up.)

$\downarrow W / H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- ▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$
 - Probability that someone has brown hair and prefers to wake up late
 - Denominator: Number of all items

Example

Relation between hair color ${\cal H}$ and preferred wake-up time ${\cal W}$

(all numbers are made up.)

$\downarrow W / H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

- ▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$
 - Probability that someone has brown hair and prefers to wake up late
 - Denominator: Number of all items
- ► Conditional probability: $p(W = \text{late}|H = \text{brown}) = \frac{30}{50}$
 - ▶ Probability that one of the brown-haired participants prefers to wake up late
 - ▶ Denominator: Number of remaining items (after conditioned event has happened)

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$p(A|B) = \frac{p(A,B)}{p(B)}$$
 definition of conditional probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$p(A|B) \quad = \quad \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities}$$

$$p(W = \mathsf{late}|H = \mathsf{brown}) \quad = \quad \frac{30}{50} = 0.6 \quad \text{intuition from previous slide}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$\begin{array}{lcl} p(A|B) & = & \frac{p(A,B)}{p(B)} & \text{definition of conditional probabilities} \\ p(W= \mbox{late}|H= \mbox{brown}) & = & \frac{30}{50} = 0.6 & \text{intuition from previous slide} \\ & = & \frac{p(W= \mbox{late}, H= \mbox{brown})}{p(H= \mbox{brown})} & \text{by applying definition} \end{array}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

$$\begin{split} p(A|B) &= \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities} \\ p(\,W = \, |\text{late}|\,H = \, \text{brown}) &= \frac{30}{50} = 0.6 \quad \text{intuition from previous slide} \\ &= \frac{p(\,W = \, |\text{late},\,H = \, \text{brown})}{p(H = \, \text{brown})} \quad \text{by applying definition} \\ &= \frac{0.46}{0.77} = 0.6 \\ \text{VL. Spectflithe Informations verarbeitung} & \text{WS 22/23} \end{split}$$

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- ▶ Conditional probabilities can be conditioned on more than two events

$$p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$$

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- Conditional probabilities can be conditioned on more than two events

$$p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$$

► Chain rule

$$p(A, B, C, D) = p(A|B, C, D)p(B, C, D)$$

$$= p(A|B, C, D)p(B|C, D)p(C, D)$$

$$= p(A|B, C, D)p(B|C, D)p(C|D)p(D)$$

Bayes Law

$$p(B|A) = \frac{p(A,B)}{p(A)} = \frac{p(A|B)p(B)}{p(A)}$$

Allows reordering of conditional probabilities

► Follows directly from above definitions

Naive Bayes Algorithm

Section 2

- ▶ Probabilistic model (i.e., takes probabilities into account)
- ▶ Probabilities are estimated on training data (relative frequencies)

Prediction Model

Idea: We calculate the probability for each possible class $\it c$, given the feature values of the item $\it x$, and we assign most probably class

Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $ightharpoonup f_n(x)$: Value of feature n for instance x
- ightharpoonup $rg \max_i e$: Select the argument i that maximizes the expression e

Prediction Model

Idea: We calculate the probability for each possible class c, given \mathcal{E} item x, and we assign most probably class

- $ightharpoonup f_n(x)$: Value of feature n for instance x
- ightharpoonup arg $\max_i e$: Select the argument i that maximizes the expression e

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
    val = EXP(i)
    if val > max:
        arg = i
        max = val
    return arg
```

Prediction Model

Idea: We calculate the probability for each possible class c, given \mathcal{E} item x, and we assign most probably class

- $ightharpoonup f_n(x)$: Value of feature n for instance x
- ightharpoonup arg max_i e: Select the argument i that maximizes the expression e

```
prediction(x) = \arg \max_{c \in C} p(c|f_1(x), f_2(x), \dots, f_n(x))
```

```
def argmax(SET, EXP):
    arg = 0
    max = 0

foreach i in SET:
    val = EXP(i)
    if val > max:
    arg = i
    max = val
    return arg
```

Prediction Model

Idea: We calculate the probability for each possible class c, given t item x, and we assign most probably class

- $ightharpoonup f_n(x)$: Value of feature n for instance x
- ightharpoonup arg $\max_i e$: Select the argument i that maximizes the expression e

prediction(x) =
$$\underset{c \in C}{\operatorname{arg max}} p(c|f_1(x), f_2(x), \dots, f_n(x))$$

How do we calculate $p(c|f_1(x), f_2(x), \dots, f_n(x))$?

```
def argmax(SET, EXP):
arg = 0
max = 0
foreach i in SET:
val = EXP(i)
if val > max:
arg = i
max = val
return arg
```

$$p(c|f_1,\ldots,f_n) =$$

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)}$$

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it

$$\propto p(f_1|f_2,\ldots,f_n,c)\times p(f_2|f_3,\ldots,f_n,c)\times\cdots\times p(c)$$

Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it

$$\propto p(f_1|f_2,\ldots,f_n,c)\times p(f_2|f_3,\ldots,f_n,c)\times\cdots\times p(c)$$

Now we – naively – assume feature independence

$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$
 denominator is constant, so we skip it
$$\propto p(f_1|f_2,\ldots,f_n,c) \times p(f_2|f_3,\ldots,f_n,c) \times \cdots \times p(c)$$
 Now we – naively – assume feature independence
$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$
 prediction(x) = $\underset{c \in C}{\operatorname{arg max}} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$

Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$
 denominator is constant, so we skip it

$$\propto p(f_1|f_2,\ldots,f_n,c)\times p(f_2|f_3,\ldots,f_n,c)\times\cdots\times p(c)$$

Now we – naively – assume feature independence

$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$

prediction(x) =
$$\arg \max_{c \in C} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$$

Where do we get $p(f_i(x)|c)$? – Training!

Learning Algorithm

- 1. For each feature $f_i \in F$
 - ► Count frequency tables from the training set:

		C (classes)			
		c_1	c_2		c_m
$v(f_i)$	a	3	2		
	b	5	7		
	c	0	1		
	\sum_{i}	8	10		

- 2. Calculate conditional probabilities
 - Divide each number by the sum of the entire column

► E.g.,
$$p(a|c_1) = \frac{3}{3+5+0}$$
 $p(b|c_2) = \frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- \triangleright Data set: 100 e-mails, manually classified as spam or not spam (50/50)
 - ightharpoonup Classes $C = \{\text{true}, \text{false}\}$
- ► Features: Presence of each of these tokens (manually selected): 'casino', 'enlargement', 'meeting', 'profit', 'super', 'text', 'xxx'

		C						C	
		true	false				true	false	
	1	45	25			1	15	35	·
casino	0	5	25		text	0	35	15	
Ca	\sum	50	50		ŭ	\sum	50	50	

Table: Extracted frequencies for features 'casino' and 'text'

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

$$p\left(\text{true} \middle| \begin{bmatrix} \text{casino} & 0 \\ \text{enlargement} & 0 \\ \text{meeting} & 1 \\ \text{profit} & 0 \\ \text{super} & 0 \\ \text{text} & 1 \\ \text{xxx} & 1 \end{bmatrix}\right)$$

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

$$p\left(\text{true} \middle| \begin{array}{c} \text{casino} & 0 \\ \text{enlargement} & 0 \\ \text{meeting} & 1 \\ \text{profit} & 0 \\ \text{super} & 0 \\ \text{text} & 1 \\ \text{xxx} & 1 \end{array} \right) \right. \begin{array}{c} p(\text{casino} = 0|\text{true}) & \times \\ p(\text{enlargement} = 0|\text{true}) & \times \\ p(\text{meeting} = 1|\text{true}) & \times \\ p(\text{profit} = 0|\text{true}) & \times \\ p(\text{super} = 0|\text{true}) & \times \\ p(\text{text} = 1|\text{true}) & \times \\ p(\text{exx} = 1|\text{true}) & \times \\ \end{array}$$

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

$$p\left(\text{true} \middle| \begin{bmatrix} \text{casino} & 0 \\ \text{enlargement} & 0 \\ \text{meeting} & 1 \\ \text{profit} & 0 \\ \text{super} & 0 \\ \text{text} & 1 \\ \text{xxx} & 1 \end{bmatrix} \right) \quad p(\text{casino} = 0 | \text{true}) \quad \times \\ p(\text{enlargement} = 0 | \text{true}) \quad \times \\ p(\text{meeting} = 1 | \text{true}) \quad \times \\ p(\text{profit} = 0 | \text{true}) \quad \times \\ p(\text{super} = 0 | \text{true}) \quad \times \\ p(\text{text} = 1 | \text{true}) \quad \times \\ p(\text{xxx} = 1 | \text{true}) \quad \times \\$$

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

$$p\left(\text{true} \middle| \begin{bmatrix} \text{casino} & 0 \\ \text{enlargement} & 0 \\ \text{meeting} & 1 \\ \text{profit} & 0 \\ \text{super} & 0 \\ \text{text} & 1 \\ \text{xxx} & 1 \end{bmatrix} \right) \qquad p(\text{casino} = 0 | \text{true}) \quad \times \\ p(\text{enlargement} = 0 | \text{true}) \quad \times \\ p(\text{meeting} = 1 | \text{true}) \quad \times \\ p(\text{profit} = 0 | \text{true}) \quad \times \\ p(\text{super} = 0 | \text{true}) \quad \times \\ p(\text{text} = 1 | \text{true}) \quad \times \\ p(\text{xxx} = 1 | \text{true}) \quad \times \\ p(\text{super} = 0 | \text{true}) \quad \times \\ p(\text{text} = 1 | \text{true}) \quad \times \\ p(\text{t$$

3. Assign the class with the higher probability

Subsection 1

Problems with Zeros

Danger

		C		
		true	false	
	1	0	35	
love	0	50	15	
2	\sum	50	50	

▶ What happens in this situation to the prediction?

Danger

		C		
		true	false	
love	1	0	35	
	0	50	15	
	\sum	50	50	

- ▶ What happens in this situation to the prediction?
- ▶ At some point, we need to multiply with p(love = 1|true) = 0
- ▶ This leads to a total probability of zero (for this class), irrespective of the other features
 - ▶ Even if another feature would be a perfect predictor!
- \rightarrow Smoothing (as before)!

References I

Jurafsky, Dan/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of October 16, 2019. Prentice Hall.