
Recap: Machine Learning

Naive Bayes
▶ Probabilistic method for classification
▶ Naive because we ignore feature

dependencies
▶ Prediction model:

arg max
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

▶ Training: Count relative frequencies

Logistic Regression
▶ Regression method for binary

classification
▶ Output numbers interpreted as

probabilities
▶ Prediction model:

1

1 + e−(ax+b)

▶ Training: Gradient descent with loss
function

VL Sprachliche Informationsverarbeitung WS 22/23 1 / 21



Machine Learning 3: Neural Networks
VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

December 8, 2022
Winter term 2022/23



Neural Networks

From a Logistic Regression to a Neuron

▶ Hypothesis function of logistic regression:

h(x) = 1

1 + e−(ax+b)

Maps one value to another (just like many other functions)

▶ Further parameterization:

h(x) = σ(ax + b) with σ(x) = 1

1 + e−x

VL Sprachliche Informationsverarbeitung WS 22/23 3 / 21



Neural Networks

From a Logistic Regression to a Neuron

▶ Hypothesis function of logistic regression:

h(x) = 1

1 + e−(ax+b)

Maps one value to another (just like many other functions)
▶ Further parameterization:

h(x) = σ(ax + b) with σ(x) = 1

1 + e−x

VL Sprachliche Informationsverarbeitung WS 22/23 3 / 21



Neural Networks

What is a Neural Network?

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?
Example

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?
Example

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?
Example

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?
Example

bx a yσ

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 21



Neural Networks

What is a Neural Network?
Straightforward to extend to multiple features

b

x1

x2

a1

a2

yσ

y = σ(a1x1 + a2x2 + b)

Figure: 1 neuron (with 2 features)

VL Sprachliche Informationsverarbeitung WS 22/23 5 / 21



Neural Networks

What is a Neural Network?
Straightforward to extend to multiple features

b

x1

x2

a1

a2

yσ

y = σ(a1x1 + a2x2 + b)

Figure: 1 neuron (with 2 features)

VL Sprachliche Informationsverarbeitung WS 22/23 5 / 21



Neural Networks

What is a Neural Network?
Straightforward to extend to multiple features and multiple regression nodes

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

σ(b21 + w11x1 + w21x2)

σ(b22 + w12x1 + w22x2)

σ(b23 + w13x1 + w23x2)

σ(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
σ: activation function (e.g., logistic)

VL Sprachliche Informationsverarbeitung WS 22/23 6 / 21



Neural Networks

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 21



Neural Networks

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 21



Neural Networks

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 21



Neural Networks

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 21



Neural Networks

Feed-Forward Neural Networks

▶ The above is called a ‘feed-forward neural network’ (FFNN)
▶ Information is fed only in forward direction

▶ Configuration choices
▶ Activation function (next slide)
▶ Layer size: Number of neurons in each layer
▶ Number of layers
▶ Loss function
▶ Optimizer

▶ Training choices
▶ Epochs/batches
▶ Training status displays

VL Sprachliche Informationsverarbeitung WS 22/23 8 / 21



Neural Networks

Feed-Forward Neural Networks

▶ The above is called a ‘feed-forward neural network’ (FFNN)
▶ Information is fed only in forward direction

▶ Configuration choices
▶ Activation function (next slide)
▶ Layer size: Number of neurons in each layer
▶ Number of layers
▶ Loss function
▶ Optimizer

▶ Training choices
▶ Epochs/batches
▶ Training status displays

VL Sprachliche Informationsverarbeitung WS 22/23 8 / 21



Neural Networks

Feed-Forward Neural Networks
Activation Functions

All neurons of one layer have the same
Popular choices:

logistic y = σ(x) = 1
1+e−x – ‘squashes’ everything to a value between 0 and 1

relu y = max(0, x) – Makes everything negative to 0
softmax Scales a vector such that values sum to 1 (probability distribution)

VL Sprachliche Informationsverarbeitung WS 22/23 9 / 21



Neural Networks

Training: “Backpropagation”

▶ Similar to gradient descent
▶ But

▶ A lot more parameters
▶ Because of multiple layers: Vanishing gradients

▶ Backpropagation involves a lot of multiplication
▶ Factors are between zero and one
⇒ Numbers get very small very quickly

▶ Training choice: Batches and epochs

VL Sprachliche Informationsverarbeitung WS 22/23 10 / 21



Neural Networks

Training: “Backpropagation”

▶ Similar to gradient descent
▶ But

▶ A lot more parameters
▶ Because of multiple layers: Vanishing gradients

▶ Backpropagation involves a lot of multiplication
▶ Factors are between zero and one
⇒ Numbers get very small very quickly

▶ Training choice: Batches and epochs

VL Sprachliche Informationsverarbeitung WS 22/23 10 / 21



Neural Networks

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)
▶ Gradient Descent

▶ Apply θ to all training instances
▶ Calculate loss over entire data set

▶ Stochastic Gradient Descent
▶ Data set in random order
▶ Calculate loss for every single instance, then update weights

Batch size: Number of items after which weights are updated

VL Sprachliche Informationsverarbeitung WS 22/23 11 / 21



Neural Networks

Training a Feedforward Neural Network II
When to stop the training
▶ Logistic regression (last week): Stop in minimum
▶ In theory, that’s what we want
▶ In practice

▶ We usually are not exactly in the minimum
▶ It’s not important to be exactly in the minimum

⇒ Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights
epochs Number of iterations over all instances

VL Sprachliche Informationsverarbeitung WS 22/23 12 / 21



Neural Networks

Dimensions

▶ Dimensionality of neural networks major source of confusion

▶ In this example
▶ Single input object represented with two numbers (= 1D)
▶ Output is a single number

▶ Entire input data set: 2D (because multiple instances)

VL Sprachliche Informationsverarbeitung WS 22/23 13 / 21



Neural Networks

Dimensions

▶ Dimensionality of neural networks major source of confusion
▶ In this example

▶ Single input object represented with two numbers (= 1D)
▶ Output is a single number

▶ Entire input data set: 2D (because multiple instances)

VL Sprachliche Informationsverarbeitung WS 22/23 13 / 21



Section 2

Practical Deep Learning



Practical Deep Learning

Libraries

▶ Deep learning in python rests on several independent libraries
▶ numpy Provides efficient matrices and arrays
▶ pandas Convenient working with tabular data (inspired by data.frames in R)
▶ scikit-learn ‘Classical’ machine learning (not deep learning)
▶ tensorflow Basic, low-level machine learning and math
▶ keras High-level deep learning (built on top of tensorflow)
▶ pytorch Newer alternative to tensorflow

▶ Libraries are well integrated

▶ Documentation is fragmented – important links:
▶ https://keras.io/api/
▶ https://pandas.pydata.org/docs/reference/index.html
▶ https://scikit-learn.org/stable/modules/classes.html

VL Sprachliche Informationsverarbeitung WS 22/23 15 / 21

https://keras.io/api/
https://pandas.pydata.org/docs/reference/index.html
https://scikit-learn.org/stable/modules/classes.html


Practical Deep Learning

Libraries

▶ Deep learning in python rests on several independent libraries
▶ numpy Provides efficient matrices and arrays
▶ pandas Convenient working with tabular data (inspired by data.frames in R)
▶ scikit-learn ‘Classical’ machine learning (not deep learning)
▶ tensorflow Basic, low-level machine learning and math
▶ keras High-level deep learning (built on top of tensorflow)
▶ pytorch Newer alternative to tensorflow

▶ Libraries are well integrated
▶ Documentation is fragmented – important links:

▶ https://keras.io/api/
▶ https://pandas.pydata.org/docs/reference/index.html
▶ https://scikit-learn.org/stable/modules/classes.html

VL Sprachliche Informationsverarbeitung WS 22/23 15 / 21

https://keras.io/api/
https://pandas.pydata.org/docs/reference/index.html
https://scikit-learn.org/stable/modules/classes.html


Practical Deep Learning

keras

▶ https://keras.io
▶ High-level Python API for deep learning
▶ Built on top of tensorflow
▶ Pattern

1. Layout the network
2. Set hyper parameters
3. Run training

Listing 1: Installing Keras
1 pip install keras

VL Sprachliche Informationsverarbeitung WS 22/23 16 / 21

https://keras.io


Practical Deep Learning

Configuration
▶ Sequential API: Linear topology of layers
▶ Functional API: Graph of layers

Listing 2: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)

Listing 3: Functional API
1 # model layout
2 in = ...
3 out = Dense(10)(in)
4 model = Model(inputs=in,
5 outputs=out)
6
7 # hyperparameter specification
8 model.compile(loss=...,
9 optimizer=...)

10
11 # training
12 model.fit(..., epochs=...,
13 batch_size=...)

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 21



Practical Deep Learning

Configuration
▶ Sequential API: Linear topology of layers
▶ Functional API: Graph of layers

Listing 4: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)

Listing 5: Functional API
1 # model layout
2 in = ...
3 out = Dense(10)(in)
4 model = Model(inputs=in,
5 outputs=out)
6
7 # hyperparameter specification
8 model.compile(loss=...,
9 optimizer=...)

10
11 # training
12 model.fit(..., epochs=...,
13 batch_size=...)

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 21



Practical Deep Learning

Configuration
Two most basic layer types

▶ Dense: “Just your regular densely-connected NN layer.”
▶ https://keras.io/api/layers/core_layers/dense/

1 layer = Dense(3, # number of neurons
2 activation = activations.sigmoid , # activation function
3 name = "dense layer 7" # useful for debugging/visualisation
4 ... # more options , see docs
5 )

▶ Input: Marks layers to accept data
▶ https://keras.io/api/layers/core_layers/input/

1 layer = Input(shape=(15,) # number of input dimensions/features
2 name = "input layer", # useful for debugging/visualisation
3 ... # see docs
4 )

VL Sprachliche Informationsverarbeitung WS 22/23 18 / 21

https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/input/


Practical Deep Learning

Shape

▶ Description of the dimensionality of the data
▶ A vector of numbers, giving the number of elements for each dimension
▶ Python tuple

▶ List with fixed length: x = (5,3,1) # a tuple
 Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)

VL Sprachliche Informationsverarbeitung WS 22/23 19 / 21



Practical Deep Learning

Shape

▶ Description of the dimensionality of the data
▶ A vector of numbers, giving the number of elements for each dimension
▶ Python tuple

▶ List with fixed length: x = (5,3,1) # a tuple
 Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)

VL Sprachliche Informationsverarbeitung WS 22/23 19 / 21



Practical Deep Learning

A Full Example
1 import numpy as np
2 from tensorflow import keras
3 from tensorflow.keras import layers
4
5 # create a random data set
6 train = np.random.randn(100)
7 train = train.reshape([4,25])
8 y_train = train[0]
9 x_train = np.rot90(train[1:])

10
11 # setup the model architecture
12 model = keras.Sequential()
13 model.add(layers.Input(shape=(3,)))
14 model.add(layers.Dense(5, activation="sigmoid"))
15 model.add(layers.Dense(1, activation="softmax"))
16
17 # compile it
18 model.compile(loss="mean_squared_error",optimizer="sgd",metrics=["accuracy"])
19
20 # train it
21 model.fit(x_train , y_train , epochs=100, batch_size=5)

VL Sprachliche Informationsverarbeitung WS 22/23 20 / 21



Practical Deep Learning

Feedforward Neural Networks
Code

1 # network architecture
2 model = Sequential()
3 model.add(layers.Dense(5, input_shape=(3,), activation="sigmoid"))
4 model.add(layers.Dense(1, activation="sigmoid"))
5
6 # training configuration
7 model.compile(loss="binary_crossentropy",
8 optimizer="sgd", # = stochastic gradient descent
9 metrics=["accuracy"])

10
11 # training
12 model.fit(train_x , train_y , epochs=150, batch_size=2,
13 verbose=1)

VL Sprachliche Informationsverarbeitung WS 22/23 21 / 21


	Neural Networks
	Practical Deep Learning

