Recap: Machine Learning

Naive Bayes

- Probabilistic method for classification
- Naive because we ignore feature dependencies
- Prediction model:

 $\underset{c \in C}{\operatorname{arg\,max}} p(c|f_1(x), f_2(x), \dots, f_n(x))$

► Training: Count relative frequencies

Logistic Regression

- Regression method for binary classification
- Output numbers interpreted as probabilities
- Prediction model:

$$\frac{1}{1 + e^{-(ax+b)}}$$

 Training: Gradient descent with loss function Machine Learning 3: Neural Networks VL Sprachliche Informationsverarbeitung

> Nils Reiter nils.reiter@uni-koeln.de

> > December 8, 2022 Winter term 2022/23

From a Logistic Regression to a Neuron

Hypothesis function of logistic regression:

$$u(x) = \frac{1}{1 + e^{-(ax+b)}}$$

Maps one value to another (just like many other functions)

From a Logistic Regression to a Neuron

Hypothesis function of logistic regression:

$$u(x) = \frac{1}{1 + e^{-(ax+b)}}$$

Maps one value to another (just like many other functions)Further parameterization:

$$h(x) = \sigma(ax + b)$$
 with $\sigma(x) = \frac{1}{1 + e^{-x}}$

3/21

What is a Neural Network? Example

What is a Neural Network?

Straightforward to extend to multiple features

Figure: 1 neuron (with 2 features)

What is a Neural Network?

Straightforward to extend to multiple features

Figure: 1 neuron (with 2 features)

What is a Neural Network?

Straightforward to extend to multiple features and multiple regression nodes

Figure: A simple neural network with 1 hidden layer

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices
 - Hidden layer

• Weights from input to hidden:
$$W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$$

• Biases
$$B_2 = (b_{21}, b_{22}, b_{23})$$

7/21

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices
 - Hidden layer

• Weights from input to hidden:
$$W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$$

• Biases
$$B_2 = (b_{21}, b_{22}, b_{23})$$

Hidden layer computation

• $f_2(X) = \sigma((W_{1,2}^{\mathsf{T}}X) + B_2)$

7/21

- If we have all the weights, bias terms, numbers of neurons and layers, we can compute the output of the network
 - Conceptually: Applying functions in sequence: $y = f_3(f_2(f_1(x)))$ (one per layer)
- Practically, a lot of the computation happens in matrices
 - Hidden layer

• Weights from input to hidden:
$$W_{1,2} = \begin{bmatrix} w_{11} & w_{12} & w_{13} \\ w_{21} & w_{22} & w_{23} \end{bmatrix}$$

• Biases
$$B_2 = (b_{21}, b_{22}, b_{23})$$

- Hidden layer computation
 - $f_2(X) = \sigma((W_{1,2}^{\mathsf{T}}X) + B_2)$
- Deep learning involves a lot of matrix multiplication
 - GPUs are highly optimized for this
 - Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Feed-Forward Neural Networks

▶ The above is called a 'feed-forward neural network' (FFNN)

Information is fed only in forward direction

Feed-Forward Neural Networks

The above is called a 'feed-forward neural network' (FFNN)

- Information is fed only in forward direction
- Configuration choices
 - Activation function (next slide)
 - Layer size: Number of neurons in each layer
 - Number of layers
 - Loss function
 - Optimizer

Training choices

- Epochs/batches
- Training status displays

Feed-Forward Neural Networks

Activation Functions

All neurons of one layer have the same Popular choices:

logistic $y = \sigma(x) = \frac{1}{1+e^{-x}}$ - 'squashes' everything to a value between 0 and 1 relu $y = \max(0, x)$ - Makes everything negative to 0 softmax Scales a vector such that values sum to 1 (probability distribution)

Training: "Backpropagation"

- Similar to gradient descent
- But
 - A lot more parameters
 - Because of multiple layers: Vanishing gradients
 - Backpropagation involves a lot of multiplication
 - Factors are between zero and one
 - \Rightarrow Numbers get very small very quickly

Training: "Backpropagation"

- Similar to gradient descent
- But
 - A lot more parameters
 - Because of multiple layers: Vanishing gradients
 - Backpropagation involves a lot of multiplication
 - Factors are between zero and one
 - \Rightarrow Numbers get very small very quickly
- Training choice: Batches and epochs

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)

- Gradient Descent
 - Apply θ to all training instances
 - Calculate loss over entire data set
- Stochastic Gradient Descent
 - Data set in random order
 - Calculate loss for every single instance, then update weights

Training a Feedforward Neural Network II

When to stop the training

- Logistic regression (last week): Stop in minimum
- In theory, that's what we want
- In practice
 - We usually are not exactly in the minimum
 - It's not important to be exactly in the minimum
- \Rightarrow Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights epochs Number of iterations over all instances

Dimensions

Dimensionality of neural networks major source of confusion

Dimensions

- Dimensionality of neural networks major source of confusion
- In this example
 - Single input object represented with two numbers (= 1D)
 - Output is a single number
- Entire input data set: 2D (because multiple instances)

Section 2

Practical Deep Learning

Practical Deep Learning

Libraries

Deep learning in python rests on several independent libraries

- numpy Provides efficient matrices and arrays
- pandas Convenient working with tabular data (inspired by data.frames in R)
- scikit-learn 'Classical' machine learning (not deep learning)
- tensorflow Basic, low-level machine learning and math
- keras High-level deep learning (built on top of tensorflow)
- pytorch Newer alternative to tensorflow

Libraries are well integrated

WS 22/23

Libraries

Deep learning in python rests on several independent libraries

- numpy Provides efficient matrices and arrays
- pandas Convenient working with tabular data (inspired by data.frames in R)
- scikit-learn 'Classical' machine learning (not deep learning)
- tensorflow Basic, low-level machine learning and math
- keras High-level deep learning (built on top of tensorflow)
- pytorch Newer alternative to tensorflow
- Libraries are well integrated
- Documentation is fragmented important links:
 - https://keras.io/api/
 - https://pandas.pydata.org/docs/reference/index.html
 - https://scikit-learn.org/stable/modules/classes.html

keras

- https://keras.io
- High-level Python API for deep learning
- Built on top of tensorflow
- Pattern
 - 1. Layout the network
 - 2. Set hyper parameters
 - 3. Run training

Listing 1: Installing Keras

1 pip install keras

Configuration

- Sequential API: Linear topology of layers
- Functional API: Graph of layers

Configuration

- Sequential API: Linear topology of layers
- Functional API: Graph of layers

```
Listing 4: Sequential API
1 # model lavout
2 model = Sequential()
3 model.add(...)
  model.add(...)
4
5
  # hyperparameter specification
6
  model.compile(loss=...,
7
    optimizer=...)
8
9
10 # training
11 model.fit(..., epochs=...,
    batch size=...)
12
```

Listing 5: Functional API

```
1 # model layout
2 in = ...
3 \text{ out} = \text{Dense}(10)(in)
4 model = Model(inputs=in,
5
     outputs=out)
6
7
  # hyperparameter specification
8 model.compile(loss=...,
     optimizer=...)
9
10
11
  # training
12 model.fit(..., epochs=...,
     batch_size=...)
13
```

Configuration

Two most basic layer types

Dense: "Just your regular densely-connected NN layer."

https://keras.io/api/layers/core_layers/dense/

```
1 layer = Dense(3, # number of neurons
2 activation = activations.sigmoid, # activation function
3 name = "dense layer 7" # useful for debugging/visualisation
4 ... # more options, see docs
5 )
```

- Input: Marks layers to accept data
 - https://keras.io/api/layers/core_layers/input/

```
1 layer = Input(shape=(15,) # number of input dimensions/features
2 name = "input layer", # useful for debugging/visualisation
3 ... # see docs
4 )
```

Shape

- Description of the dimensionality of the data
- ► A vector of numbers, giving the number of elements for each dimension
- Python tuple
 - List with fixed length: x = (5,3,1) # a tuple
 - **A** Tuple with one element printed as (5,) or 5

19/21

Shape

- Description of the dimensionality of the data
- A vector of numbers, giving the number of elements for each dimension
- Python tuple
 - List with fixed length: x = (5,3,1) # a tuple
 - A Tuple with one element printed as (5,) or 5

```
1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])

2 x.shape # returns (5,)

3 x = np.zeros((3,5))

4 # array([[0., 0., 0., 0., 0.],

5 # [0., 0., 0., 0., 0.],

6 # [0., 0., 0., 0., 0.]])

7 x.shape # returns (3,5)
```

A Full Example

```
1 import numpy as np
2 from tensorflow import keras
3 from tensorflow.keras import layers
4
5 # create a random data set
6 train = np.random.randn(100)
7 train = train.reshape([4,25])
8 y_train = train[0]
9 \times \text{train} = \text{np.rot90(train[1:])}
10
  # setup the model architecture
11
  model = keras.Sequential()
12
13 model.add(layers.Input(shape=(3,)))
14 model.add(layers.Dense(5, activation="sigmoid"))
  model.add(layers.Dense(1, activation="softmax"))
15
16
  # compile it
17
18
  model.compile(loss="mean_squared_error", optimizer="sgd", metrics=["accuracy"])
19
  # train it
20
21
  model.fit(x_train, y_train, epochs=100, batch_size=5)
```

Feedforward Neural Networks

Code

```
# network architecture
2 model = Sequential()
3 model.add(lavers.Dense(5, input shape=(3,), activation="sigmoid"))
  model.add(layers.Dense(1, activation="sigmoid"))
4
5
6 # training configuration
  model.compile(loss="binary_crossentropy",
    optimizer="sgd", # = stochastic gradient descent
8
    metrics=["accuracy"])
Q
10
11
  # training
  model.fit(train_x, train_y, epochs=150, batch_size=2,
12
    verbose=1)
13
```