Recap: Machine Learning

Naive Bayes

- Probabilistic method for classification
- Naive because we ignore feature dependencies
- Prediction model:
$\arg \max p\left(c \mid f_{1}(x), f_{2}(x)\right.$, $c \in C$
- Training: Count relative frequencies

Logistic Regression

- Regression method for binary classification
- Output numbers as probabilities
- Prediction model:

$$
\frac{1}{1+e^{-(a x+b)}}
$$

- Training: Gradient descent with loss function

Neural Network

- Layered architecture
- Classification type depends on last layer
- Output numbers as probabilities
- Prediction model:

$$
L_{n}\left(L_{n-1}\left(L_{\ldots}\left(L_{1}(X)\right)\right)\right)
$$

- Training: Backpropagation w/ loss function

Last Week

```
import numpy as np
from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import LabelBinarizer
# create a random data set with }500\mathrm{ pairs
# of random numbers
x_train = np.random.randn (1000,5)
# Target value: What's the maximum of five numbers?
# (0.1, 0.2, -0.2, 0.5, -3)
# -> (4)
y_train = np.array([(np.argmax (x)) for x in x_train])
# one-hot-encoding of target values
lb = LabelBinarizer()
y_train = lb.fit_transform(y_train)
# setup the model architecture
model = keras.Sequential()
model.add(layers.Input(shape=(5,)))
model.add(layers.Dense(20, activation="sigmoid"))
model.add(layers.Dense(5, activation="softmax"))
```

24

```
model.fit(x_train, y_train, epochs=20, batch_size=5)
# create a test data set
x_test = np.random.randn (100,5)
y_test = np.array([np.argmax (x) for x in x_test])
model.evaluate(x=x_test, y=lb.fit_transform(y_test))
# compile it
model.compile(loss="categorical_crossentropy",
    optimizer="sgd",
    metrics=["accuracy"])
# train it
```

- Task: Given five numbers, give us the index of the highest
\rightarrow 5-ary classification task
詈 20 epochs, stochastic gradient descent, categorical cross entropy

Machine Learning 4: Word Embeddings
 VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

December 15, 2022
Winter term 2022/23

Introduction

A very simple text example

- Task: Given a sentence (with four words), predict wether the sentence is positive or negative
- E.g., a comment about a book or movie

Introduction

A very simple text example

- Task: Given a sentence (with four words), predict wether the sentence is positive or negative
- E.g., a comment about a book or movie
- Operationalization
- Binary classification task
- Four input features, one for each word
- Each word gets an index number, which will be the input of the network
demo

Lessons Learned

- Representing words by index numbers alone is not satisfactory
- \{'awesome': 4, 'is': 5, 'terrible': 6, 'bad': 7, 'super': 8\}
- 'Terrible' and 'bad' are semantically much closer than 'terrible' and 'awesome', but this is not represented
- Replacing 'bad' with 'terrible' or 'super' is both a change of 1 index position, but has very different meaning

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung - wenn auch nicht für alle Fälle seiner Benützung - dieses Wort so erklären: Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953, 1953)

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung - wenn auch nicht für alle Fälle seiner Benützung - dieses Wort so erklären: Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953, 1953)

You shall know a word by the company it keeps (Firth, 1957, 11)

Distributional Semantics

Count vectors

- For each word, we count how often it appears with all other words (within a window of n tokens)
- Results in very long vectors, because all other words
- Many words do not appear with many other words, because of Zipf
- Many elements are zero

Distributional Semantics

Count vectors

- For each word, we count how often it appears with all other words (within a window of n tokens)
- Results in very long vectors, because all other words
- Many words do not appear with many other words, because of Zipf
- Many elements are zero

Variants of count vectors

- TF-IDF instead of raw counts
- Mathematical dimensionality reduction

Count Vectors in Our Example

- Words used in similar contexts often get similar vectors
- E.g., evaluative adjectives like 'awesome', 'super', ...
- Antonyms often also get similar vectors

Count Vectors in Our Example

- Words used in similar contexts often get similar vectors
- E.g., evaluative adjectives like 'awesome', 'super', ...
- Antonyms often also get similar vectors
- Recipe
- Take a large corpus
- Extract count vectors
- Insert vectors into our training set

Section 2

Word2Vec

Literature basis

Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf
Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Software package

```
word2vec - https://github.com/tmikolov/word2vec
``` (other implementations do exist)

\section*{Basics}
- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors

\section*{Basics}
- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors Word vectors as a by product
- Recap: Logistic/linear regression and gradient descent
- Algorithm to fit parameters to a distribution of data points
- Core ingredient: Loss function
- Result: Parameter setting \(\theta\)

\section*{Basics}
- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors Word vectors as a by product
- Recap: Logistic/linear regression and gradient descent
- Algorithm to fit parameters to a distribution of data points
- Core ingredient: Loss function
- Result: Parameter setting \(\theta\)
- Word2vec
- Let's use these parameters as word vectors
- (one parameter vector per word)
- How to come up with a task that generates these parameters?

Two tasks

\section*{Continuous Bag of Words (CBOW)}

Context words used to predict a single word

\section*{Skip-Gram}

One word used to predict its context

\section*{Skip-gram}
- Context: \(\pm 2\) words around target word \(t\)
... lemon, a [tablespoon of apricot jam, a] pinch
c1
c2 t c3
c4

\section*{Skip-gram}
- Context: \(\pm 2\) words around target word \(t\)
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for \((t, c)\) wether \(c\) are really context words for \(t\)
- Probability of \(\vec{t}\) and \(\vec{c}\) being positive examples: \(p(+\mid \vec{t}, \vec{c})\)

\section*{Skip-gram}
- Context: \(\pm 2\) words around target word \(t\)
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for \((t, c)\) wether \(c\) are really context words for \(t\)
- Probability of \(\vec{t}\) and \(\vec{c}\) being positive examples: \(p(+\mid \vec{t}, \vec{c})\)
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)

\section*{Skip-gram}
- Context: \(\pm 2\) words around target word \(t\)
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for \((t, c)\) wether \(c\) are really context words for \(t\)
- Probability of \(\vec{t}\) and \(\vec{c}\) being positive examples: \(p(+\mid \vec{t}, \vec{c})\)
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)
- Similarity of vectors? Cosine / dot product!

\section*{Skip-gram}
- Context: \(\pm 2\) words around target word \(t\)
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for \((t, c)\) wether \(c\) are really context words for \(t\)
- Probability of \(\vec{t}\) and \(\vec{c}\) being positive examples: \(p(+\mid \vec{t}, \vec{c})\)
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)
- Similarity of vectors? Cosine / dot product!
- Similarity \(\rightarrow\) probability? Sigmoid / logistic function!

\section*{Skip-gram}

\section*{Notation}
\(t, c\) : words
\(\vec{t}, \vec{c}\) : vectors for the words
(this is different from JM19)
\[
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
\]

\section*{Skip-gram}

Notation
\(t, c:\) words
\(\vec{t}, \vec{c}:\) vectors for the words
(this is different from JM19)
\[
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
\]
but the context consists of more than one word!

\section*{Skip-gram}

\section*{Notation}
\(t, c\) : words
\(\vec{t}, \vec{c}\) : vectors for the words
(this is different from JM19)
\[
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
\]
but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

\section*{Skip-gram}

\section*{Notation}
\(t, c\) : words
\(\vec{t}, \vec{c}\) : vectors for the words
(this is different from JM19)
\[
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
\]
but the context consists of more than one word!
Assumption: They are independent, allowing multiplication
\[
\begin{aligned}
& p\left(+\mid t, c_{1: k}\right)=\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}} \\
& \log p\left(+\underset{\text { VL Sprachliche Informatientiverabbeithng }}{\mid t} e^{-\vec{t} \cdot \vec{c}_{i}}\right.
\end{aligned}
\]

\section*{Skip-gram}
- So far, we have assumed that we have vector \(\vec{t}\) for word \(t\), but where do they come from?
- Basic gradient descent: We start randomly, and iteratively improve

\section*{Skip-gram}

Negative sampling
- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

\section*{Skip-gram}

Negative sampling
- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple \((t, c)\), we add \(k\) negative tuples
- Negative tuple \(\left(t, c_{n}\right)\), with \(c_{n}\) randomly selected (and \(t \neq c_{n}\))

\section*{Skip-gram}

Negative sampling
- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple \((t, c)\), we add \(k\) negative tuples
- Negative tuple (\(t, c_{n}\)), with \(c_{n}\) randomly selected (and \(t \neq c_{n}\))
- Select noise words according to their weighted frequency
- \(p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}\)
- This leads to rare words being more frequently selected, frequent words less

\section*{Skip-gram}

Negative sampling
- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple \((t, c)\), we add \(k\) negative tuples
- Negative tuple \(\left(t, c_{n}\right)\), with \(c_{n}\) randomly selected (and \(t \neq c_{n}\))
- Select noise words according to their weighted frequency
\(-p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}}^{\operatorname{count}\left(w^{\prime}\right)^{\alpha}}}\)
- This leads to rare words being more frequently selected, frequent words less
- Two new 'parameters' on this slide: \(k\) and \(\alpha\)
- They have a different status than \(\theta\) (the parameters we want to learn)
- Therefore: Hyperparameters

\section*{Word2Vec}

Loss
- We also need a loss function
- Idea:
- Maximize \(p(+\mid t, c)\) (positive samples)
- Minimize \(p\left(+\mid t, c_{n}\right)\) (negative samples)

\section*{Word2Vec}

Loss
- We also need a loss function
- Idea:
- Maximize \(p(+\mid t, c)\) (positive samples)
- Minimize \(p\left(+\mid t, c_{n}\right)\) (negative samples)
\[
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
\]

\section*{Word2Vec}

Loss
- We also need a loss function
- Idea:
- Maximize \(p(+\mid t, c)\) (positive samples)
- Minimize \(p\left(+\mid t, c_{n}\right)\) (negative samples)
\[
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
\]
\(\theta:\) Concatenation of all \(\vec{t}, \vec{c}, \vec{c}_{n}\)

\section*{Remarks and observations}
- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation

\section*{Section 3}

Embeddings and Neural Networks

\section*{Two Options}
- Embedding: Each token is replaced by a vector of numbers

\section*{Two Options}
- Embedding: Each token is replaced by a vector of numbers
- Option 1
- Download pre-trained embeddings (e.g., via word2vec)
- Replace them during preprocessing
- Benefit from large training set

\section*{Two Options}
- Embedding: Each token is replaced by a vector of numbers
- Option 1
- Download pre-trained embeddings (e.g., via word2vec)
- Replace them during preprocessing
- Benefit from large training set
- Option 2
- Train your own embeddings in your neural network
- In the end, it's just more parameters to learn, and we know how to do that
- Keras: keras.layers.Embedding

Section 4
Summary

\section*{Summary}

Represent text data in neural networks
- Map words to indices
- Embeddings
- Way to represent input data
- Word2Vec: Concrete method to calculate/train embeddings
- Well suited as input for neural networks
- Pre-trained embeddings
- Easy to use
- Trained on very large corpora
- Allow to incorporate some kind of knowledge into our own models that we don't have to annotate```

