
Recap: Embeddings

Represent text data in neural networks
▶ Map words to indices
▶ Embeddings

▶ Way to represent input data
▶ Word2Vec: Concrete method to calculate/train embeddings
▶ Well suited as input for neural networks
▶ Pre-trained embeddings

▶ Easy to use
▶ Trained on very large corpora
▶ Allow to incorporate some kind of knowledge into our own models that we don’t have to

annotate

VL Sprachliche Informationsverarbeitung WS 22/23 1 / 32

Machine Learning 5: Overfitting & Sequence Labeling
VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

December 22, 2022
Winter term 2022/23

Section 1

Overfitting

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?
▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 32

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?

▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 32

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?
▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

VL Sprachliche Informationsverarbeitung WS 22/23 4 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance

▶ You are unable to apply your knowledge to situations not exactly as in the test
▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung

VL Sprachliche Informationsverarbeitung WS 22/23 5 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance
▶ You are unable to apply your knowledge to situations not exactly as in the test

▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung

VL Sprachliche Informationsverarbeitung WS 22/23 5 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance
▶ You are unable to apply your knowledge to situations not exactly as in the test

▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung
VL Sprachliche Informationsverarbeitung WS 22/23 5 / 32

Overfitting

Real-World Examples

This is an excellent collection of examples for overfitting: https://stats.stackexchange.
com/questions/128616/whats-a-real-world-example-of-overfitting

VL Sprachliche Informationsverarbeitung WS 22/23 6 / 32

https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting

Overfitting

Overfitting and Neural Networks

Classical machine learning
▶ Feature selection can avoid relying on irrelevant features
 Only one source for overfitting

Neural networks are overfitting machines
▶ Layered architecture ⇒ Any relation between x and y can be learned

▶ including a fixed set of if/else rules

Techniques against overfitting
▶ Regularization
▶ Dropout

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 32

Overfitting

Overfitting and Neural Networks

Classical machine learning
▶ Feature selection can avoid relying on irrelevant features
 Only one source for overfitting

Neural networks are overfitting machines
▶ Layered architecture ⇒ Any relation between x and y can be learned

▶ including a fixed set of if/else rules

Techniques against overfitting
▶ Regularization
▶ Dropout

VL Sprachliche Informationsverarbeitung WS 22/23 7 / 32

Section 2

Regularization

Regularization

Intuition

Figure: Visual representation of regularization results (Skansi, 2018, 108)

VL Sprachliche Informationsverarbeitung WS 22/23 9 / 32

Regularization

Formalization

▶ Formally, regularization is a parameter added to the loss

J(w⃗) = Joriginal(w⃗) + R

VL Sprachliche Informationsverarbeitung WS 22/23 10 / 32

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2

▶ In practice, we drop the square root and calculate L2 norm of the weight vector during
training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

VL Sprachliche Informationsverarbeitung WS 22/23 11 / 32

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2
▶ In practice, we drop the square root and calculate L2 norm of the weight vector during

training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

VL Sprachliche Informationsverarbeitung WS 22/23 11 / 32

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2
▶ In practice, we drop the square root and calculate L2 norm of the weight vector during

training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

VL Sprachliche Informationsverarbeitung WS 22/23 11 / 32

Regularization

L2-Regularization

▶ What does it do?

▶ If weights w⃗ are large: Loss is increased more
▶ Large weights are only considered if the increased loss is “worth it”, i.e., if it is

counterbalanced by a real error reduction
▶ Small weights are preferred

VL Sprachliche Informationsverarbeitung WS 22/23 12 / 32

Regularization

L2-Regularization

▶ What does it do?
▶ If weights w⃗ are large: Loss is increased more
▶ Large weights are only considered if the increased loss is “worth it”, i.e., if it is

counterbalanced by a real error reduction
▶ Small weights are preferred

VL Sprachliche Informationsverarbeitung WS 22/23 12 / 32

Regularization

L1-Regularization (Tibshirani, 1996)

▶ Absolute values instead of squares

L1(⃗x) =
n∑

i=0

|xi|

L1 or L2?
▶ Skansi (2018):

▶ In most cases: L2 is better
▶ Use L1 if data is very noisy or sparse

VL Sprachliche Informationsverarbeitung WS 22/23 13 / 32

Regularization

L1-Regularization (Tibshirani, 1996)

▶ Absolute values instead of squares

L1(⃗x) =
n∑

i=0

|xi|

L1 or L2?
▶ Skansi (2018):

▶ In most cases: L2 is better
▶ Use L1 if data is very noisy or sparse

VL Sprachliche Informationsverarbeitung WS 22/23 13 / 32

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

VL Sprachliche Informationsverarbeitung WS 22/23 14 / 32

https://keras.io/api/layers/regularizers/

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

VL Sprachliche Informationsverarbeitung WS 22/23 14 / 32

https://keras.io/api/layers/regularizers/

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

VL Sprachliche Informationsverarbeitung WS 22/23 14 / 32

https://keras.io/api/layers/regularizers/

Section 3

Dropout

Dropout

Dropout

▶ Regularization: Numerically combatting overfitting
▶ Dropout: Structurally combatting overfitting Hinton et al. (2012)

▶ A new hyperparameter π = [0; 1]
▶ In each epoch, every weight is set to zero with a probability of π

VL Sprachliche Informationsverarbeitung WS 22/23 16 / 32

Dropout

Dropout

▶ Regularization: Numerically combatting overfitting
▶ Dropout: Structurally combatting overfitting Hinton et al. (2012)

▶ A new hyperparameter π = [0; 1]
▶ In each epoch, every weight is set to zero with a probability of π

VL Sprachliche Informationsverarbeitung WS 22/23 16 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 0

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 1

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 2

VL Sprachliche Informationsverarbeitung WS 22/23 17 / 32

Dropout

Dropout
Implementation

▶ Why?
▶ Dropout forces the network to learn redundancies

▶ Implementation
▶ In Keras, dropout is realized as additional layer
▶ Applies to the layer before the dropout layer

1 model.add(layers.Dense(10)) # no edges dropped
2 model.add(layers.Dense(20)) # edges are dropped here
3 model.add(layers.Dropout(0.5))

VL Sprachliche Informationsverarbeitung WS 22/23 18 / 32

Dropout

Dropout
Implementation

▶ Why?
▶ Dropout forces the network to learn redundancies

▶ Implementation
▶ In Keras, dropout is realized as additional layer
▶ Applies to the layer before the dropout layer

1 model.add(layers.Dense(10)) # no edges dropped
2 model.add(layers.Dense(20)) # edges are dropped here
3 model.add(layers.Dropout(0.5))

VL Sprachliche Informationsverarbeitung WS 22/23 18 / 32

Section 4

Sequence Labeling

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

VL Sprachliche Informationsverarbeitung WS 22/23 20 / 32

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

VL Sprachliche Informationsverarbeitung WS 22/23 20 / 32

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies

▶ Recurrent neural networks are one solution to this problem

VL Sprachliche Informationsverarbeitung WS 22/23 20 / 32

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

VL Sprachliche Informationsverarbeitung WS 22/23 20 / 32

Sequence Labeling

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and not independent of each other

▶ I.e.: The prediction for one class influences the next

Example (Part of speech tagging)
“the dog barks” → “DET NN VBZ”

VL Sprachliche Informationsverarbeitung WS 22/23 21 / 32

Sequence Labeling

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and not independent of each other

▶ I.e.: The prediction for one class influences the next

Example (Part of speech tagging)
“the dog barks” → “DET NN VBZ”

VL Sprachliche Informationsverarbeitung WS 22/23 21 / 32

Sequence Labeling

BIO Scheme
▶ Named entity recognition is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …

▶ BIO scheme
▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

VL Sprachliche Informationsverarbeitung WS 22/23 22 / 32

Sequence Labeling

BIO Scheme
▶ Named entity recognition is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …
▶ BIO scheme

▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

VL Sprachliche Informationsverarbeitung WS 22/23 22 / 32

Sequence Labeling

BIO Scheme
▶ Named entity recognition is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …
▶ BIO scheme

▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

VL Sprachliche Informationsverarbeitung WS 22/23 22 / 32

Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)

VL Sprachliche Informationsverarbeitung WS 22/23 23 / 32

Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)

VL Sprachliche Informationsverarbeitung WS 22/23 23 / 32

Sequence Labeling

Towards Recurrent Neural Networks

To work with sequences, we need to include the sequence into the model

Notation
X = (X⃗1, X⃗2, . . .) The input data set containing a sequence of instances

(e.g., a sequence of words)
X⃗i = (x1, x2, . . .) One instance with feature values

(e.g., embedding dimensions)
Yi Output for instance Xi

VL Sprachliche Informationsverarbeitung WS 22/23 24 / 32

Sequence Labeling

Recurrent Neural Networks
Example

y

x1

x2

Xi
b1

b2

b3

VL Sprachliche Informationsverarbeitung WS 22/23 25 / 32

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

VL Sprachliche Informationsverarbeitung WS 22/23 26 / 32

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

y

x1

x2

Xi b1

b2

b3

recurrent connection

VL Sprachliche Informationsverarbeitung WS 22/23 26 / 32

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

y

x1

x2

Xi b1

b2

b3

recurrent connection

y

x1

x2

Xi b1

b2

b3

VL Sprachliche Informationsverarbeitung WS 22/23 26 / 32

Sequence Labeling

Recurrent Neural Networks

▶ FFNN, CNN: Weights between neurons
▶ RNN

▶ Weights between neurons
▶ Weight(s) for recurrent connections

Input shape
RNN layers need 2D input:
▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings would go)

VL Sprachliche Informationsverarbeitung WS 22/23 27 / 32

Sequence Labeling

Recurrent Neural Networks

▶ FFNN, CNN: Weights between neurons
▶ RNN

▶ Weights between neurons
▶ Weight(s) for recurrent connections

Input shape
RNN layers need 2D input:
▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings would go)

VL Sprachliche Informationsverarbeitung WS 22/23 27 / 32

Sequence Labeling

Demo

▶ Simple task: Learn to count distances
▶ Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
▶ E.g.: “010010001” becomes “000100100”
▶ Model has to learn to count the distance
▶ Training data can easily be generated

demo

VL Sprachliche Informationsverarbeitung WS 22/23 28 / 32

Sequence Labeling

Demo

▶ Simple task: Learn to count distances
▶ Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
▶ E.g.: “010010001” becomes “000100100”
▶ Model has to learn to count the distance
▶ Training data can easily be generated

demo

VL Sprachliche Informationsverarbeitung WS 22/23 28 / 32

Sequence Labeling

Implementation in keras

▶ tf.keras.layers.SimpleRNN
▶ Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/

Selected parameters:
▶ recurrent_dropout=0.0 Dropout for recurrent links
▶ return_sequences=False Wether to return the entire sequence or just the last element

1 model.add(layers.SimpleRNN(...))

VL Sprachliche Informationsverarbeitung WS 22/23 29 / 32

https://keras.io/api/layers/recurrent_layers/simple_rnn/

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

VL Sprachliche Informationsverarbeitung WS 22/23 30 / 32

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

VL Sprachliche Informationsverarbeitung WS 22/23 30 / 32

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

VL Sprachliche Informationsverarbeitung WS 22/23 30 / 32

Section 5

Summary

Summary

Summary

Overfitting
▶ Bla

VL Sprachliche Informationsverarbeitung WS 22/23 32 / 32

	Overfitting
	Regularization
	Dropout
	Sequence Labeling
	Summary

