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Section 1

Word2Vec



Word2Vec

Introduction
▶ Embeddings: Words are embedded into a high-dimensional vector space

▶ (and not simply indexed any more)
▶ Word2Vec

▶ A method to represent words in a (high-dimensional) vector space
▶ No end-user task

▶ A vector representation for “köln”
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Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative
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⟨0.0088, 0.0418, 0.0030,−0.1450⟩

⟨0.0683,−0.0784, 0.0886, 0.0640⟩
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Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations
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Subsection 1

Generating Word Embeddings with Word2Vec



Word2Vec Generating Word Embeddings with Word2Vec

Literature basis
Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word
Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf

Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

Software package
word2vec – https://github.com/tmikolov/word2vec
(other implementations do exist)

Textbook recommendation
Dan Jurafsky/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of
October 16, 2019. Prentice Hall
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Word2Vec Generating Word Embeddings with Word2Vec

Core Idea

▶ Define a classification task for which we have huge training data sets
▶ Given a word, predict predict possible context words
▶ Training data: Any text collection (e.g., Wikipedia)

▶ Train a neural network
▶ Extract learned weights and use as embeddings 
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Word2Vec Generating Word Embeddings with Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict a single word

Skip-Gram
One word used to predict its context
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

▶ Classifier:
▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Probability is based on similarity
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (JM19, 112)
▶ Similarity of vectors? Dot product / cosine! 
▶ Similarity → probability? Sigmoid / logistic function! 

Reiter Word Embeddings 2023-01-26 172 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Probability is based on similarity
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (JM19, 112)
▶ Similarity of vectors? Dot product / cosine! 
▶ Similarity → probability? Sigmoid / logistic function! 

Reiter Word Embeddings 2023-01-26 172 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Probability is based on similarity
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (JM19, 112)

▶ Similarity of vectors? Dot product / cosine! 
▶ Similarity → probability? Sigmoid / logistic function! 

Reiter Word Embeddings 2023-01-26 172 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Probability is based on similarity
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (JM19, 112)
▶ Similarity of vectors? Dot product / cosine! 

▶ Similarity → probability? Sigmoid / logistic function! 

Reiter Word Embeddings 2023-01-26 172 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Probability is based on similarity
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (JM19, 112)
▶ Similarity of vectors? Dot product / cosine! 
▶ Similarity → probability? Sigmoid / logistic function! 

Reiter Word Embeddings 2023-01-26 172 / 184



Word2Vec Generating Word Embeddings with Word2Vec

When are vectors similar?

▶ Metric that takes two vectors and returns a similarity score
▶ Linear algebra: dot product (“Skalarprodukt”)

a⃗ · b⃗ =

N∑
i=1

aibi

= |⃗a||⃗b| cos∢(⃗a, b⃗)
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter Word Embeddings 2023-01-26 174 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter Word Embeddings 2023-01-26 174 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter Word Embeddings 2023-01-26 174 / 184



Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ = |⃗a||⃗b| cos∢(⃗a, b⃗)
a⃗ · b⃗
|⃗a||⃗b|

=
|⃗a||⃗b| cos∢(⃗a, b⃗)

|⃗a||⃗b|
= cos∢(⃗a, b⃗)
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Word2Vec Generating Word Embeddings with Word2Vec

Cosine Similarity Metric

cos∢(⃗a, b⃗) =
∑N

i=1 aibi∑N
i=1 a2i

∑N
i=1 b2i

▶ Independent of length (measures the angle between the vectors)
▶ Simple to calculate
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

e =

∞∑
n=0

1

n! = 2.71828 = Euler’s Number

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b)
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ So far, we have assumed that we have vector t⃗ for word t, but where do they come from?
▶ Basic gradient descent: We start randomly, and iteratively improve
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other

▶ Negative sampling
▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)
▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less
▶ Two new ‘parameters’ on this slide: k and α

▶ They have a different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters
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Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec
Loss

▶ We also need a loss function
▶ Idea:

▶ Maximize p(+|t, c) (positive samples)
▶ Minimize p(+|t, cn) (negative samples)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all t⃗, c⃗, c⃗n
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Word2Vec Generating Word Embeddings with Word2Vec

Remarks and observations

▶ Each word is used twice, with different roles
▶ As target word (for predicting its context)
▶ As context word (to be predicted from another target word)
▶ Different options: Only use one embedding, combine them by addition or concatenation

▶ Matrices
▶ Conceptually, it is not hugely important how the embeddings are stored in detail
▶ But for the implementation because of efficiency
▶ All target vectors are stored in matrix W (word matrix)
▶ All context vectors are stored in matrix C (context matrix)
▶ θ = (W,C)
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Schluss

Zum Schluss

▶ Einführung in die Informationsverarbeitung 
▶ Nächste Woche: Studienleistung, anschließend Referenzlösung in Ilias

▶ Als nächstes: Semesterferienvorlesungsfreie Zeit ⌣

▶ Sommersemester 2023
▶ Lehrveranstaltungen in Klips: https://klips2.uni-koeln.de
▶ Welche soll/muss ich nehmen? → Modulhandbuch!

▶ https://phil-fak.uni-koeln.de/studium/bachelor/bachelor-faecher
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Danke für’s Zuhören und eine gute Zeit!
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