Word Embeddings

Einführung in die Informationsverarbeitung

Nils Reiter

January 26, 2023

Section 1

Word2Vec

Introduction

- Embeddings: Words are embedded into a high-dimensional vector space
- (and not simply indexed any more)
- Word2Vec
- A method to represent words in a (high-dimensional) vector space
- No end-user task

Introduction

- Embeddings: Words are embedded into a high-dimensional vector space
- (and not simply indexed any more)
- Word2Vec
- A method to represent words in a (high-dimensional) vector space
- No end-user task
- A vector representation for "köln"

 $-0.00330 .0537-0.0681-0.0733-0.0201-0.0329 \quad 0.12420 .0324-0.0744-0.0149-0.0047-0.0484-0.0483 \quad 0.0481 \quad 0.01070 .0101-0.0704$

 $0.00850 .03100 .0479-0.05110 .0198-0.0886-0.0274-0.13640 .0322-0.1638-0.06890 .0016-0.1039 \quad 0.0059 \quad 0.0757-0.00340 .1013$ $-0.0034-0.0065-0.04680 .1577-0.0065-0.0478-0.00040 .06820 .0045-0.0607-0.0590 \quad 0.0343 \quad 0.0036-0.1014-0.0136-0.00630 .0801$ $\begin{array}{llllllllllllllllllllllll}0.0360 & 0.0579 & -0.0039 & 0.0975 & 0.0500 & -0.0558 & -0.0095 & 0.0057 & -0.0246 & 0.1070 & -0.0186 & 0.0669 & -0.0781 & -0.0569 & -0.1286 & -0.0834 & 0.0106\end{array}$ $-0.0672-0.02050 .06130 .0290-0.0545-0.0481-0.0882-0.0489 \quad 0.0622-0.0730-0.0192-0.0415-0.0287 \quad 0.0218-0.0427-0.0046$

 $\begin{array}{llllllllllllllllllllllllll}-0 & 0.0273 & 0.0547 & 0.0135 & 0.0006 & -0.0241 & -0.0418 & 0.0278 & -0.0821 & -0.0572 & -0.0039 & 0.0214 & -0.0196 & 0.0449 & -0.0286 & 0.0204 & 0.0681 & -0.0901\end{array}$ $-0.0266-0.0287-0.08740 .0797-0.0784-0.09200 .03800 .04110 .08590 .03690 .05950 .04460 .0363-0.0353-0.0044-0.00610 .1134$ $\begin{array}{lllllllllllllllllllllll}0.1420 & -0.0026 & -0.0013 & 0.0033 & 0.0508 & 0.0096 & -0.0757 & 0.0085 & -0.0099 & -0.0384 & 0.0218 & -0.0259 & -0.0112 & -0.0212 & 0.0273 & 0.0532 & -0.0278\end{array}$

 $-0.07290 .08940 .05320 .0164-0.0039-0.0108-0.0248-0.1021-0.0549-0.03180 .0309-0.0691$

Embeddings

Why is that useful?
(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative
$\langle 0.0088,0.0418,0.0030,-0.1450\rangle$
$\langle 0.0683,-0.0784,0.0886,0.0640\rangle$

$$
\langle-0.0353,-0.0044,-0.0061,0.1134\rangle
$$

$$
\langle-0.0278,-0.0634,0.0317,-0.0022\rangle
$$

$$
\langle-0.0689,0.0016,-0.1039,0.0059\rangle
$$

Embeddings

Why is that useful?

(2) For semantic calculations

x Berlin
x Paris
x Cologne

x Cologne

x man

x man
x man
x woman

x man

* woman

x man
* woman
demo

Subsection 1

Generating Word Embeddings with Word2Vec

Literature basis

Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf
Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Software package

word2vec - https://github.com/tmikolov/word2vec (other implementations do exist)

Core Idea

- Define a classification task for which we have huge training data sets
- Given a word, predict predict possible context words
- Training data: Any text collection (e.g., Wikipedia)
- Train a neural network
- Extract learned weights and use as embeddings

CBOW

Continuous Bag of Words (CBOW)

Context words used to predict a single word

Skip-gram

Skip-gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...
c1
c2 t c3
c4

Skip-gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$

Skip-gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)

Skip-gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)
- Similarity of vectors? Dot product / cosine! ©

Skip-gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$
- Probability is based on similarity
- "a word is likely to occur near the target if its embedding is similar to the target embedding" Jurafsky/Martin (JM19, 112)
- Similarity of vectors? Dot product / cosine! ©
- Similarity \rightarrow probability? Sigmoid / logistic function! (1)

When are vectors similar?

- Metric that takes two vectors and returns a similarity score
- Linear algebra: dot product ("Skalarprodukt")

When are vectors similar?

- Metric that takes two vectors and returns a similarity score
- Linear algebra: dot product ("Skalarprodukt")

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\sum_{i=1}^{N} a_{i} b_{i} \\
& =|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b})
\end{aligned}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95
\end{aligned}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95 \\
\vec{a}^{\prime} & =10 \vec{a}=[0,0,10,10] \\
\vec{b}^{\prime} & =10 \vec{b}=[0,0,10,9.5]
\end{aligned}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95 \\
\vec{a}^{\prime} & =10 \vec{a}=[0,0,10,10] \\
\vec{b}^{\prime} & =10 \vec{b}=[0,0,10,9.5] \\
\vec{a}^{\prime} \cdot \vec{b}^{\prime} & =195
\end{aligned}
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent (= has more higher numbers in its vector) than 'Cologne'

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b})
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b}) \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\frac{|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|}
\end{aligned}
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b}) \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\frac{|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b})}{|\vec{a}||\vec{b}|} \\
& =\cos \varangle(\vec{a}, \vec{b})
\end{aligned}
$$

Cosine Similarity Metric

$$
\cos \varangle(\vec{a}, \vec{b})=\frac{\sum_{i=1}^{N} a_{i} b_{i}}{\sum_{i=1}^{N} a_{i}^{2} \sum_{i=1}^{N} b_{i}^{2}}
$$

- Independent of length (measures the angle between the vectors)
- Simple to calculate

The Logistic Function

$$
e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828=\text { Euler's Number }
$$

The Logistic Function

Notation

Skip-gram

t, c : words
\vec{t}, \vec{c} : vectors for the words
(this is different from JM19)

$$
\begin{aligned}
p(+\mid t, c) & =\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
p(-\mid t, c) & =1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

ngs with Word2V
Notatinn

Skip-gram

$$
\begin{aligned}
p(+\mid t, c) & =\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
p(-\mid t, c) & =1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!
nes with Word2V

Skip-gram

$$
\begin{aligned}
p(+\mid t, c) & =\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
p(-\mid t, c) & =1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word! Assumption: They are independent, allowing multiplication

Notation
t, c : words
\vec{t}, \vec{c} : vectors for the words
(this is different from JM19)

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

$$
\begin{aligned}
p\left(+\mid t, c_{1: k}\right) & =\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}} \\
\log p\left(+\mid t, c_{1: k}\right) & =\sum_{\text {Word Embediditids }}^{k} \log \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}}
\end{aligned}
$$

Skip-gram

- So far, we have assumed that we have vector \vec{t} for word t, but where do they come from?
- Basic gradient descent: We start randomly, and iteratively improve

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple (t, c_{n}), with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
- $p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$
- This leads to rare words being more frequently selected, frequent words less

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
- $p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$
- This leads to rare words being more frequently selected, frequent words less
- Two new 'parameters' on this slide: k and α
- They have a different status than θ (the parameters we want to learn)
- Therefore: Hyperparameters

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize $p(+\mid t, c)$ (positive samples)
- Minimize $p\left(+\mid t, c_{n}\right)$ (negative samples)

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize $p(+\mid t, c)$ (positive samples)
- Minimize $p\left(+\mid t, c_{n}\right)$ (negative samples)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize $p(+\mid t, c)$ (positive samples)
- Minimize $p\left(+\mid t, c_{n}\right)$ (negative samples)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

$\theta:$ Concatenation of all $\vec{t}, \vec{c}, \vec{c}_{n}$

Remarks and observations

- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation

Remarks and observations

- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation
- Matrices
- Conceptually, it is not hugely important how the embeddings are stored in detail
- But for the implementation because of efficiency
- All target vectors are stored in matrix W (word matrix)
- All context vectors are stored in matrix C (context matrix)
- $\theta=(W, C)$

Zum Schluss

- Einführung in die Informationsverarbeitung \checkmark
- Nächste Woche: Studienleistung, anschließend Referenzlösung in Ilias

Zum Schluss

- Einführung in die Informationsverarbeitung
- Nächste Woche: Studienleistung, anschließend Referenzlösung in Ilias
- Als nächstes: Semesterferienvorlesungsfreie Zeit :)
- Sommersemester 2023
- Lehrveranstaltungen in Klips: https://klips2.uni-koeln.de
- Welche soll/muss ich nehmen? \rightarrow Modulhandbuch!
- https://phil-fak.uni-koeln.de/studium/bachelor/bachelor-faecher

Danke für's Zuhören und eine gute Zeit!

