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Was ist die PCS?
Die Public Climate School ist eine Aktionswoche zu
Themen rund um die Klimakrise – voller Vorträge,
Workshops & Diskussionsrunden von und mit
Wissenschaftler:innen, Expert:innen und Dozierenden
verschiedenster Fachgebiete.
Sie hat zum Ziel, Bewusstsein und Aufklärung für die
herausragende Bedeutung der Klimakrise für eine
lebenswerte Zukunft auf dieser Erde zu schaffen und
Bildung für nachhaltige Entwicklung sowie Klimabildung
für alle zu ermöglichen.
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weil sie für alle Menschen offen ist – explizit nicht nur für Studierende.

PCS steht für...

weil Themen rund um die Klimakrise in den Vordergrund gerückt werden.
Wir versuchen Klimabildung möglichst vielen Menschen zugänglich zu machen.

weil die Klimakrise in allen Fach- und Lebensbereichen relevant ist und damit Schulen,
Hochschulen und Unis in die Verantwortung bringt, das Wissen in die breite
Gesellschaft zu tragen.
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Warum?

Quellen: IPCC (2021): Zusammenfassung für die politische Entscheidungsfindung. In: Naturwissenschaftliche Grundlagen. Beitrag von Arbeitsgruppe I zum Sechsten Sachstandsbericht des Zwischenstaatlichen Ausschusses für Klimaänderungen 
[Masson-Delmotte, V., P. Zhai et al.; Knopf, Brigitte Knopf und Oliver Geden (2022): Ist Deutschland auf dem 1,5-Grad-Pfad? Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH
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Automatization

Corpus

Program/
Automatization

System output

Today
1. Decision Trees (cont’d)
2. Neural Networks
3. Gradient Descent
4. Word2Vec

Next week
1. Encoder-Attention-Decoder
2. BERT
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Decision Trees





Decision Trees

Decision Trees
Prediction Model – Toy Example

▶ What are the instances?
▶ Situations we are in

(this is not really automatisable)
▶ What are the features?

▶ Consciousness
▶ Clothing situation
▶ Promises made
▶ Whether we are driving
▶ …
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Decision Trees

Decision Trees
Prediction Model

▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)

▶ Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2

Reiter NLP 2 November 8, 2022 6 / 55



Decision Trees

Decision Trees
Prediction Model

▶ Each non-leaf node in the tree represents one feature
▶ Each leaf node represents a class label
▶ Each branch at this node represents one possible feature value

▶ Number of branches = |v(fi)| (number of possible values)
▶ Make a prediction for x:

1. Start at root node
2. If it’s a leaf node

▶ assign the class label
3. Else

▶ Check node which feature is to be tested (fi)
▶ Extract fi(x)
▶ Follow corresponding branch
▶ Go to 2

Reiter NLP 2 November 8, 2022 6 / 55



Decision Trees

Decision Trees
Learning Algorithm

▶ Core idea: The tree represents splits of the training data
1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

▶ Done.
3. Else:

▶ Select a feature fi
▶ Extract feature values of all instances in D
▶ Split the data set according to fi: D = Dv ∪ Dw ∪ Du . . .
▶ Go back to 2

▶ Remaining question: How to select features?
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Decision Trees

Decision Trees
Feature Selection

▶ What is a good feature?
▶ One that maximizes homogeneity in the split data set

▶ “Homogeneity”
▶ Increase
{♠♠♠♡} = {♡} ∪ {♠♠♠}

▶ No increase
{♠♠♠♡} = {♠} ∪ {♠♠♡}

▶ Homogeneity: Entropy/information Shannon (1948)
▶ Rule: Always select the feature with the highest information gain (IG)

▶ (= the highest reduction in entropy = the highest increase in homogeneity)
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Decision Trees

Decision Trees
Entropy (Shannon, 1948)

entropy

number of classes present in X

relative frequency of the class

H(X) = −
n∑

i=1

p(xi) logb p(xi)

Examples (with b = 2)
▶ H({♠♠♠♠}) = −4

4 log2 4
4 = 0

▶ H({♠♠♠♡}) = −

3

4
log2

3

4︸ ︷︷ ︸
♠

+
1

4
log2

1

4︸ ︷︷ ︸
♡

 = 0.562

▶ H({♠♠♡♡}) = . . . = 0.693
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Decision Trees

Decision Trees
Entropy (Shannon, 1948)

entropy

number of classes present in X

relative frequency of the class

logb(x) = y
exactly if
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Decision Trees

Decision Trees
Feature Selection (2)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = H([3, 1])

= 0.562

H({♡}) = H([1]) = 0

H({♠♠♠}) = H([3])

= 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = H([3, 1])

= 0.562

H({♠}) = H([1]) = 0

H({♠♠♡}) = H([2, 1])

= 0.637
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Decision Trees

Decision Trees
Feature Selection (3)

{♠♠♠♡}

{♡}{♠♠♠}

H({♠♠♠♡}) = 0.562

H({♡}) = 0

H({♠♠♠}) = 0

{♠♠♠♡}

{♠}{♠♠♡}

H({♠♠♠♡}) = 0.562

H({♠}) = 0

H({♠♠♡}) = 0.637

IG(f1) = H({♠♠♠♡})−�(
H({♡}),H({♠♠♠})

)
= 0.562− 0 = 0.562

IG(f2) = H({♠♠♠♡})−�(
H({♠}),H({♠♠♡})

)
= 0.562− (

3

4
0.637 +

1

4
0)

= 0.562− 0.562− 0.477 = 0.085
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Decision Trees

Decision Trees
Summary

▶ Classification algorithm
▶ Built around trees, recursive learning and prediction
▶ Detailed example in the appendix
▶ Pros

▶ Highly transparent
▶ Reasonably fast
▶ Dependencies between features can be incorporated into the model

▶ Cons
▶ Often not very good
▶ No pairwise dependencies
▶ May lead to overfitting
▶ Only nominal features

▶ Variants exist
Reiter NLP 2 November 8, 2022 12 / 55
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Decision Trees

Task Types and Methods

Task Method(s)
Classification Decision tree, support vector machine, neural network,

naïve Bayes, k-nearest neighbors, …
Clustering k-means, affinity propagation, …

Ranking
Ranking SVM, PageRank, …

Sequence labeling Hidden Markov models, conditional random field, neural
networks …

Segmentation …
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Decision Trees

Supervised Machine Learning
Two parts to understand

Prediction Model
How do we make predictions on data instances?
(e.g., how do we assign a part of speech tag to a (unlabeled) word?)

Learning Algorithm
How do we create a prediction model, given annotated data?
(e.g., how do we create rules for assigning a part of speech tag to a word?)
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Section 2

Neural Networks



Neural Networks

A Neuron
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Neural Networks

A Neuron

x1 w1

x2
w2

x3

w3

b a y

y = a(w1x1 + w2x2 + w3x3 + b)
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Neural Networks

A Neuron
Example

5
0.1

3
0.4

−4

0.7
0.2 σ y

y = a(w1x1 + w2x2 + w3x3 + b)
= σ(0.1× 5 + 0.4× 3 + 0.7×−4 + 0.2)

= σ(−0.9)
= 0.2890504973749960365369
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Neural Networks

A Neuron
Where do these values come from?

x1 w1

x2
w2

x3

w3

b a y

Calculated during execution
Learned during training (parameters)

Specified during design (hyper parameter)
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Neural Networks

Many Neurons make a Network

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

a(b21 + w11x1 + w21x2)

a(b22 + w12x1 + w22x2)

a(b23 + w13x1 + w23x2)

a(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
a: activation function
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Neural Networks

Prediction Model
“Forward Pass”

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions to calculate individual values in sequence

▶ Practically, a lot of the computation happens in matrices in parallel
▶ Hidden layer

▶ Weights: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation: f2(X) = σ( W⊺
1,2X + B2︸ ︷︷ ︸

matrix operations

)

▶ Deep learning involves a lot of matrix operations
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Reiter NLP 2 November 8, 2022 20 / 55
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Neural Networks

Feed-Forward Neural Networks

▶ The above is called a “feedforward neural network”
▶ Information is fed only in forward direction

▶ Configuration/design choices
▶ Activation function in each layer
▶ Number of neurons in each layer
▶ Number of layers
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Neural Networks

Processing Language

▶ Neural networks operate on numbers
▶ To process language, we need to preprocess our data

Word Indices
1. Establish the vocabulary (i.e., the set of all known tokens [in the training corpus])
2. Create a ranking (i.e., count all word types)
3. Decide on a threshold (e.g., the 10 000 most frequent words)
4. Replace all words above the threshold by an index number
5. Replace all other words by a special symbol
⇒ “Out of vocabulary” (OOV) words are a challenge for applications
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Neural Networks

Example

1

0.5

0.3

0.8
0.3

0.5

0.
7

x1

x2

0.1

0.6

0.7

0.
2

0.8

1

x1 x2 y
0 0 0.86169636
1 0 0.87786007
1 1 0.891605

10 10 0.90814614
...

...
...

Figure: Neural network with randomly initialized weights
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5 import numpy as np
6 from tensorflow import keras
7 from tensorflow.keras import layers
8
9 # setup the model architecture

10 model = keras.Sequential()
11 model.add(layers.InputLayer(input_shape=(2,)))
12 model.add(layers.Dense(3, activation="sigmoid"))
13 model.add(layers.Dense(1, activation="sigmoid"))
14
15 model.compile() # compile it
16
17 w1 = [ # weights between neurons
18 np.array([[0.1,0.6,0.7],[0.2,0.8,1]]),
19 # bias terms
20 np.array([0.5,0.8,0.5]) ]
21
22 w2 = [ # weights between neurons
23 np.array([[0.3],[0.3],[0.7]]),
24 # bias terms
25 np.array([1]) ]
26 model.layers[0].set_weights(w1)
27 model.layers[1].set_weights(w2)

Neural network with manually
specified weights as above



Neural Networks

Learning Algorithm

▶ We can immediately calculate outcomes (= make predictions), even if all weights are
generated randomly

▶ How do we improve the weights?

▶ Gradient Descent
1. Initialize all weights randomly
2. Calculate and derive the loss (the ‘wrongness’) of the current weights on the training data
3. Check if we have found the optimal solution
4. If not, calculate the direction in which the loss decreases
5. Go back to 3.

Reiter NLP 2 November 8, 2022 25 / 55
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Section 3

Gradient Descent



Gradient Descent

Loss function: Intuition

▶ Loss should be as small as possible
▶ Total loss can be calculated for given parameters θ

▶ θ is a vector containing all weights and bias terms in the network
▶ Idea:

▶ We change θ until we find the minimum of the function
▶ We use the derivative to find out if we are in a minimum
▶ The derivative also tells us in which direction to go
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Gradient Descent

Loss function: Intuition

θ

J(θ)
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Gradient Descent

Loss and Hypothesis Function

▶ Hypothesis function h
▶ Calculates outcomes, given feature values x
▶ Done by the neural network

▶ Loss function J
▶ Calculates ‘wrongness’ of h, given parameter values θ (and a data set)
▶ In reality, θ represents millions of parameters

Reiter NLP 2 November 8, 2022 29 / 55
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Gradient Descent

Loss function: Definition

▶ Different loss function are in use
▶ Which one to use depends on our aims

Binary Cross-Entropy Loss
▶ Loss function used for binary classification problems
▶ Assumption: Output of the network is in [0; 1], 0/1 representing the two classes

J(θ) = − 1

m

m∑
i=0

yi log hθ(xi) + (1− yi) log(1− hθ(xi))
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Gradient Descent

Loss function: Definition
Binary Cross-Entropy Loss

J(θ) =

− 1

m

m∑
i=0

yi log2 hθ(xi)︸ ︷︷ ︸
0 iff yi=0

+ (1−yi) log2(1−hθ(xi))︸ ︷︷ ︸
0 iff yi=1

m Number of training instances
yi The true outcomes (from training data)
xi The input values
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Gradient Descent

Summary and Remarks

▶ Neural network consists of layers of neurons
▶ Training goal: Find weights, such that the training instances are correctly predicted
▶ Training method: Gradient descent
▶ Training does not have to be completed in one go

▶ Pausing at any time is possible
▶ Training can continue with a different data set
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Section 5

Summary



Summary

Summary
Neural networks
▶ Consist of neurons, which combine values from previous neurons
▶ Matrix computation
▶ Can ‘learn’ any relation between input and output

Gradient descent
▶ Basic form to train a neural network
▶ Start with random weights, then iteratively improve
▶ Loss: Quantification of the wrongness of the current weights

Word2Vec
▶ Take learned weights as vector representation for input
▶ Allows “semantic calculation”
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