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Neural Networks

» Neural network consists of layers of neurons
» Training goal: Find weights, such that the training instances are correctly predicted
» Training method: Gradient descent

» Training does not have to be completed in one go

» Pausing at any time is possible
» Training can continue with a different data set
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Word2Vec



Word2Vec

Introduction

» Embeddings: Words are embedded into a high-dimensional vector space
» (and not simply indexed any more)

> Word2Vec
> A method to represent words in a (high-dimensional) vector space
> No end-user task
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> A method to represent words in a (high-dimensional) vector space
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A vector representation for “koln”
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Word2Vec

Embeddings

Why is that useful?
@ Input Representation for Neural Networks

» Example Task: Sentiment Analysis
» Take a sentence, classify it as positive or negative
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Word2Vec

Embeddings

Why is that useful?
@ Input Representation for Neural Networks

» Example Task: Sentiment Analysis
» Take a sentence, classify it as positive or negative
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Subsection 1

Generating Word Embeddings with Word2Vec



Word2Vec Generating Word Embeddings with Word2Vec

Literature basis
Two very influential papers by Mikolov et al.

Tomas Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word
Representations in Vector Space”. In: arXiv cs.CL. URL:
https://arxiv.org/pdf/1301.3781.pdf

Toméas Mikolov/llya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26. Ed. by

C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases—and-their-compositionality.pdf

Textbook recommendation

Dan Jurafsky/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of
October 16, 2019. Prentice Hall
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Word2Vec Generating Word Embeddings with Word2Vec

Core ldea

» Define a classification task for which we have huge training data sets

» Given a word, predict predict possible context words
» Training data: Any text collection (e.g., Wikipedia)

» Train a neural network

> Extract learned weights and use as embeddings
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Word2Vec Generating Word Embeddings with Word2Vec

TWO taSkS INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT
w(t-2) N\ w(t-2)
\ A
\ /
w(t-1) \ / w(t-1)
sum /
\ 4>L ) | L /
w wt) 4,—»
/ \\\\
w(t+1) \\ w(t+1)
//
w(t+2) [ w(t+2)
CBOW Skip-gram
Continuous Bag of Words (CBOW) Skip-Gram

Context words used to predict a single word One word used to predict its context
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Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec

Skip-Gram

» Context: +2 words around target word ¢

lemon, a [tablespoon of apricot jam, al] pinch
cl c2 t c3 c4
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Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec

Skip-Gram

» Context: +2 words around target word ¢
lemon, a [tablespoon of apricot jam, al] pinch
cl c2 t c3 c4
» Classifier:

» Predict for (¢, ¢) wether c are really context words for ¢
> Probability of ¢ and ¢ being positive examples: p(+|t, ©)
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Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec Training

> NN training: We start with random vectors, and iteratively improve them
» Vector similarity can be measured easily
» Dot product / cosine! ©

> “a word is likely to occur near the target if its embedding is similar to the target
embedding” Jurafsky/Martin (JM19, 112)

» Probability is based on similarity
» Similarity — probability? Sigmoid / logistic function! @
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Word2Vec Generating Word Embeddings with Word2Vec

When are vectors similar?

P> Metric that takes two vectors and returns a similarity score

» Linear algebra: dot product (“Skalarprodukt”)
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product

Example

i = 1[0,0,1,1]
b = [0,0,1,0.95]
i-b = 195
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?

» Favours high frequent words
» For the word ‘Cologne’, it's easier to be similar to ‘the’ than to ‘Disseldorf’
> Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?

» Favours high frequent words

» For the word ‘Cologne’, it's easier to be similar to ‘the’ than to ‘Disseldorf’

> Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’
» Missing: Normalisation for vector length

» Normalisation can mostly done by dividing by something

» Normalised dot product: Divide by vector lengths

N
Zi- b = Z aibi
=1
Ei . b _ Ziil aibi
|| b] || b]
Zé\il a;bi 2

= = cos <(d, b)
N N )
Dim1 a% Dim1 sz'
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Word2Vec Generating Word Embeddings with Word2Vec

Cosine Similarity Metric

> SV abi

cos <(a, b) =
(&) ZL@?ZL bz2'

» Independent of length (measures the angle between the vectors)

> Simple to calculate
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

Turn Similarities into Probabilities

1 1

Y= 1+e % = 14e(azt+bd)

Reiter NLP 3
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

Turn Similarities into Probabilities

1 1

1 o0
y - —z — —(az: = —(L*z 1
e ™~ Tte (eaf®) ™ 14 e=(xat0) e = E — = 2.71828
Y= 1015 n!

n=0

(Euler's Number)
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

Turn Similarities into Probabilities

4
-5 -2 -1 A T
_ 1 _ 1 _ 1
Y= 14+e—2 1+e—(af+b) - 1+e—(1*z+0) [e'e) 1
Y= et =) —=271828
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(Euler's Number)
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

Turn Similarities into Probabilities

iR

1 1

y = 1+efz -

_ 1
1+e—(aa{+b) - 1+e—(1*w+0)

Y= 11019
1

o0 1
e= E - = 2.71828
7 l+€—(110>:<:z:+]5) n=0 n:
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function

Turn Similarities into Probabilities

Y
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Skip-gram

Reiter

Word2Vec Generating Word Embeddia ith \Alardd\,

Notation
t, c¢: words
t, ¢ vectors for the words

CDS‘) “ (this is different from JM19)
S
p(+|t o) = o(t-c)
—%e
e
—|t,c) = = =
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Word2Vec Generating Word Embeddia ith \Alardd\,

Notation

Skip—gram t, c: words
t, ¢ vectors for the words

(this is different from JM19)

p(Hlte) = ———==0a(t-9

p-lte) = 1-— =

but the context consists of more than one word!
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t, ¢ vectors for the words
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p(Hlte) = ———==0a(t-9

p-lte) = 1-— =

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

1
st e = [[——

logp(—i_‘tvcl:k) = Zlog
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

» So far, we have assumed that we have vector 7 for word t, but where do they come from?

P> Basic gradient descent: We start randomly, and iteratively improve
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Word2Vec Generating Word Embeddings with Word2Vec
Skip-gram

Negative sampling

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each
other
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Skip-gram

Negative sampling

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each
other

» Negative sampling
> For every positive tuple (¢, ¢), we add k negative tuples
> Negative tuple (¢, ¢,), with ¢, randomly selected (and t # ¢;,)

Reiter NLP 3 November 15, 2022 20/36



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

Negative sampling

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each

other
» Negative sampling
> For every positive tuple (¢, ¢), we add k negative tuples
> Negative tuple (¢, ¢,), with ¢, randomly selected (and t # ¢;,)
P> Select noise words according to their weighted frequency
> pa(w) count(w)®

= > count(w’)e

» This leads to rare words being more frequently selected, frequent words less

Reiter NLP 3 November 15, 2022

20/36



Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

Negative sampling

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each

other
» Negative sampling
> For every positive tuple (¢, ¢), we add k negative tuples
> Negative tuple (¢, ¢,), with ¢, randomly selected (and t # ¢;,)
P> Select noise words according to their weighted frequency
> _ count(w)®
p("(w) > count(w' )«
» This leads to rare words being more frequently selected, frequent words less

» Two more hyperparameters on this slide: & and «

Reiter NLP 3 November 15, 2022
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Encoder-Attention-Decoder Architecture

Different Layer Types

» So far: fully connected layer
» Other layers

> Convolutional layer

» Dropout layer

»( Recurrent layer

P(Long short-term memory (LSTM) Iayer)\

> .

W

Reiter NLP 3 November 15, 2022 22/36


Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter


Encoder-Attention-Decoder Architecture

Different Layer Types

» So far: fully connected layer
» Other layers
> Convolutional layer
» Dropout layer
» Recurrent layer
> Long short-term memory (LSTM) layer
>

Sequences are important for NLP

> Many NLP tasks are sequential tasks: The outcome of one item has impact on the next
item (e.g., part of speech)

» Recurrent and LSTM layers add new connections
> Instead of processing one item at a time, they look at sequences

» Connections along the sequence (i.e., the neuron knows its output for the previous item)
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

sequence
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

sequence

recurrent connection
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

sequence

recurrent connection
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

» Feed-forward neural networks: Weights between neurons
» Recurrent neural networks

> Weights between neurons
> Weight(s) for recurrent connections
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

» Feed-forward neural networks: Weights between neurons
» Recurrent neural networks

> Weights between neurons
> Weight(s) for recurrent connections

» Also possible in two directions
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Encoder-Attention-Decoder Architecture

Encoder-Decoder-Architecture

» Often: No 1-to-1 relation between input and output
> l.e.: Not as many output items as input items (e.g., machine translation)
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Encoder-Attention-Decoder Architecture

Encoder-Decoder-Architecture

» Often: No 1-to-1 relation between input and output
> l.e.: Not as many output items as input items (e.g., machine translation)
» Encorder-decoder-network has two parts:

» Encoder maps from input data to an internal representation
» Decoder maps from internal representation to the output

» Internal representation

» Use the output or internal state of last recurrent cell
» Not interpretable

Reiter NLP 3 November 15, 2022
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Encoder-Attention-Decoder Architecture

From Encoder-Decoder to Attention

Encoder Decoder

()—C0) O—®
Onn® O—®
(— O—®)

O—®
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Encoder-Attention-Decoder Architecture

From Encoder-Decoder to Attention

Encoder Attention Decoder
(x)

()
(xs)

Input sequence

9ouanbas 1ndinQ
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BERT

Introduction

» BERT has outperformed the state of the art in many tasks

» Breakthrough in natural language processing
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BERT

Introduction

> BERT has outperformed the state of the art in many tasks

» Breakthrough in natural language processing
> General idea
» Encoder-Attention-Decoder architecture (= transformer)
> Process whole input at once (max. 512 tokens, = bidirectional)
» Pre-training and fine-tuning on different tasks
Jacob Devlin/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171-4186. DOI: 10.18653/v1/N19-1423.
URL: https://aclanthology.org/N19-1423
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BERT

Pre-Training and Fine-Tuning

» BERT models are trained on huge data sets
» Training one from scratch requires significant resources (time/money)

» Pre-trained models are shared freely
» Recipe: Take a pre-trained model and fine-tune it on your task
» Pre-trained model contains an abstract language representation

Reiter NLP 3 November 15, 2022 31/36



BERT

Pre-Training and Fine-Tuning

BERT models are trained on huge data sets

Pre-trained models are shared freely
Recipe: Take a pre-trained model and fine-tune it on your task
» Pre-trained model contains an abstract language representation

>
» Training one from scratch requires significant resources (time/money)
| 2
>

» Fine-tuning
» Any language-related task!
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BERT

BERT Training Tasks

Masked Language Modeling (MLM)
> Sentence-wise
> 15% of the tokens are “masked” by a special token
P> Model predicts these, having access to all other tokens
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BERT Training Tasks

Masked Language Modeling (MLM)

> Sentence-wise

> 15% of the tokens are “masked” by a special token

P> Model predicts these, having access to all other tokens
Next sentence prediction (NSP)

» Two (masked) sentences are concatenated

> Model has to predict wether second sentence follows on the first or not
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Summary

Summary

Word2Vec
> Take learned weights as vector representation for input

» Allows “semantic calculation”

BERT
» Split up training process into two

» Pretraining on simple, generic tasks
» Fine-tuning on specific tasks

» Use bidirectional NN architecture
» Use huge data sets for pretraining
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