Natural Language Processing 3: Transfer learning, Transformer models HS Sprachtechnologie für eine bessere Welt (Winter term 2022/23)

Nils Reiter,
nils.reiter@uni-koeln.de

November 15, 2022

Neural Networks

- Neural network consists of layers of neurons
- Training goal: Find weights, such that the training instances are correctly predicted
- Training method: Gradient descent
- Training does not have to be completed in one go
- Pausing at any time is possible
- Training can continue with a different data set

Section 1

Word2Vec

Introduction

- Embeddings: Words are embedded into a high-dimensional vector space
- (and not simply indexed any more)
- Word2Vec
- A method to represent words in a (high-dimensional) vector space
- No end-user task

Introduction

- Embeddings: Words are embedded into a high-dimensional vector space
- (and not simply indexed any more)
- Word2Vec
- A method to represent words in a (high-dimensional) vector space
- No end-user task
- A vector representation for "köln"

 $-0.00330 .0537-0.0681-0.0733-0.0201-0.0329 \quad 0.12420 .0324-0.0744-0.0149-0.0047-0.0484-0.0483 \quad 0.0481 \quad 0.01070 .0101-0.0704$

 $0.00850 .03100 .0479-0.05110 .0198-0.0886-0.0274-0.13640 .0322-0.1638-0.06890 .0016-0.1039 \quad 0.0059 \quad 0.0757-0.00340 .1013$ $-0.0034-0.0065-0.04680 .1577-0.0065-0.0478-0.00040 .06820 .0045-0.0607-0.0590 \quad 0.0343 \quad 0.0036-0.1014-0.0136-0.00630 .0801$
 $-0.0672-0.02050 .06130 .0290-0.0545-0.0481-0.0882-0.0489 \quad 0.0622-0.0730-0.0192-0.0415-0.0287 \quad 0.0218-0.0427-0.0046$

 $\begin{array}{llllllllllllllllllllllllll}-0 & 0.0273 & 0.0547 & 0.0135 & 0.0006 & -0.0241 & -0.0418 & 0.0278 & -0.0821 & -0.0572 & -0.0039 & 0.0214 & -0.0196 & 0.0449 & -0.0286 & 0.0204 & 0.0681 & -0.0901\end{array}$ $-0.0266-0.0287-0.08740 .0797-0.0784-0.09200 .03800 .04110 .08590 .03690 .05950 .04460 .0363-0.0353-0.0044-0.00610 .1134$ $\begin{array}{lllllllllllllllllllllll}0.1420 & -0.0026 & -0.0013 & 0.0033 & 0.0508 & 0.0096 & -0.0757 & 0.0085 & -0.0099 & -0.0384 & 0.0218 & -0.0259 & -0.0112 & -0.0212 & 0.0273 & 0.0532 & -0.0278\end{array}$ $-0.06340 .0317-0.00220 .0882-0.02400 .0031-0.03700 .0747-0.0097-0.03150 .04050 .0124-0.1416-0.0768 \quad 0.0363-0.1248-0.0134$
 $-0.07290 .08940 .05320 .0164-0.0039-0.0108-0.0248-0.1021-0.0549-0.03180 .0309-0.0691$

Embeddings

Why is that useful?
(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?
(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative

Embeddings

Why is that useful?

(1) Input Representation for Neural Networks

- Example Task: Sentiment Analysis
- Take a sentence, classify it as positive or negative
$\langle 0.0088,0.0418,0.0030,-0.1450\rangle$
$\langle 0.0683,-0.0784,0.0886,0.0640\rangle$

$$
\langle-0.0353,-0.0044,-0.0061,0.1134\rangle
$$

$$
\langle-0.0278,-0.0634,0.0317,-0.0022\rangle
$$

$$
\langle-0.0689,0.0016,-0.1039,0.0059\rangle
$$

Embeddings

Why is that useful?
(2) For semantic calculations

Embeddings

Why is that useful?
2) For semantic calculations

Embeddings

Why is that useful?
2 For semantic calculations

Embeddings

Why is that useful?
2 For semantic calculations

Embeddings

Why is that useful?
(2) For semantic calculations

Embeddings

Why is that useful?
(2) For semantic calculations

Subsection 1

Generating Word Embeddings with Word2Vec

Literature basis

Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf
Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Textbook recommendation

Dan Jurafsky/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of October 16, 2019. Prentice Hall

Core Idea

- Define a classification task for which we have huge training data sets
- Given a word, predict predict possible context words
- Training data: Any text collection (e.g., Wikipedia)
- Train a neural network
- Extract learned weights and use as embeddings

Continuous Bag of Words (CBOW)

Context words used to predict a single word

Skip-Gram

One word used to predict its context

Word2Vec

Skip-Gram

- Context: ± 2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ... c1 c2 t c3 c4

Word2Vec

Skip-Gram

- Context: ± 2 words around target word t

$$
\begin{aligned}
& \text {... lemon, a [tablespoon of apricot jam, a] pinch ... } \\
& \text { c1 c2 t c3 c4 }
\end{aligned}
$$

- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$

Word2Vec Training

- NN training: We start with random vectors, and iteratively improve them
- Vector similarity can be measured easily
- Dot product / cosine!
- "a word is likely to occur near the target if its embedding is similar to the target embedding"
- Probability is based on similarity
- Similarity \rightarrow probability? Sigmoid / logistic function! ©

When are vectors similar?

- Metric that takes two vectors and returns a similarity score
- Linear algebra: dot product ("Skalarprodukt")

When are vectors similar?

- Metric that takes two vectors and returns a similarity score
- Linear algebra: dot product ("Skalarprodukt")

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{N} a_{i} b_{i}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95
\end{aligned}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95 \\
\vec{a}^{\prime} & =10 \vec{a}=[0,0,10,10] \\
\vec{b}^{\prime} & =10 \vec{b}=[0,0,10,9.5]
\end{aligned}
$$

Dot product

Example

$$
\begin{aligned}
\vec{a} & =[0,0,1,1] \\
\vec{b} & =[0,0,1,0.95] \\
\vec{a} \cdot \vec{b} & =1.95 \\
\vec{a}^{\prime} & =10 \vec{a}=[0,0,10,10] \\
\vec{b}^{\prime} & =10 \vec{b}=[0,0,10,9.5] \\
\vec{a}^{\prime} \cdot \vec{b}^{\prime} & =195
\end{aligned}
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent (= has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent (= has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{N} a_{i} b_{i}
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent ($=$ has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\sum_{i=1}^{N} a_{i} b_{i} \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\frac{\sum_{i=1}^{N} a_{i} b_{i}}{|\vec{a}||\vec{b}|}
\end{aligned}
$$

Dot product as similarity metric?

- Favours high frequent words
- For the word 'Cologne', it's easier to be similar to 'the' than to 'Düsseldorf'
- Because 'the' is more frequent (= has more higher numbers in its vector) than 'Cologne'
- Missing: Normalisation for vector length
- Normalisation can mostly done by dividing by something
- Normalised dot product: Divide by vector lengths

$$
\begin{aligned}
\vec{a} \cdot \vec{b} & =\sum_{i=1}^{N} a_{i} b_{i} \\
\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} & =\frac{\sum_{i=1}^{N} a_{i} b_{i}}{|\vec{a}||\vec{b}|} \\
& =\frac{\sum_{i=1}^{N} a_{i} b_{i}}{\sum_{i=1}^{N} a_{i}^{2} \sum_{i=1}^{N} b_{i}^{2}}=\cos \varangle(\vec{a}, \vec{b})
\end{aligned}
$$

Cosine Similarity Metric

$$
\cos \varangle(\vec{a}, \vec{b})=\frac{\sum_{i=1}^{N} a_{i} b_{i}}{\sum_{i=1}^{N} a_{i}^{2} \sum_{i=1}^{N} b_{i}^{2}}
$$

- Independent of length (measures the angle between the vectors)
- Simple to calculate

The Logistic Function

Turn Similarities into Probabilities

The Logistic Function

Turn Similarities into Probabilities

The Logistic Function

Turn Similarities into Probabilities

The Logistic Function

Turn Similarities into Probabilities

$$
\begin{aligned}
y=\frac{1}{1+e^{-x}} & =\frac{1}{1+e^{-(a x+b)}}=\frac{1}{1+e^{-(1 * x+0)}} \\
y & =\frac{1}{1+e^{-(10 * x-15)}} \\
y & =\frac{1}{1+e^{-(10 * x+15)}}
\end{aligned}
$$

$e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828$
(Euler's Number)

The Logistic Function

Turn Similarities into Probabilities

$$
\begin{aligned}
y=\frac{1}{1+e^{-x}} & =\frac{1}{1+e^{-(a x+b)}}=\frac{1}{1+e^{-(1 * x+0)}} \\
y & =\frac{1}{1+e^{-(10 * x-15)}} \\
y & =\frac{1}{1+e^{-(10 * x+15)}} \\
y & =\frac{1}{1+e^{-(100 * x-10)}}
\end{aligned}
$$

$e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828$
(Euler's Number)

The Logistic Function

Turn Similarities into Probabilities

$$
\begin{aligned}
y=\frac{1}{1+e^{-x}} & =\frac{1}{1+e^{-(a x+b)}}=\frac{1}{1+e^{-(1 * x+0)}} \\
y & =\frac{1}{1+e^{-(10 * x-15)}} \\
y & =\frac{1}{1+e^{-(10 * x+15)}} \\
y & =\frac{1}{1+e^{-(100 * x-10)}}
\end{aligned}
$$

$e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828$
(Euler's Number)
t, c : words
\vec{t}, \vec{c} : vectors for the words
(this is different from JM19)

Skip-gram
t, c : words
\vec{t}, \vec{c} : vectors for the words
(this is different from JM19)

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!

Natatinn

Skip-gram

$$
\begin{aligned}
p(+\mid t, c) & =\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
p(-\mid t, c) & =1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word! Assumption: They are independent, allowing multiplication

Skip-gram

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

$$
\begin{aligned}
p\left(+\mid t, c_{1: k}\right) & =\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}} \\
\log p\left(+\mid t, c_{1: k}\right) & =\sum_{\text {NLP }}^{3}{ }_{i=1}^{k} \log \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}}
\end{aligned}
$$

Skip-gram

- So far, we have assumed that we have vector \vec{t} for word t, but where do they come from?
- Basic gradient descent: We start randomly, and iteratively improve

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple (t, c_{n}), with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
$-p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}}^{\operatorname{count}\left(w^{\prime}\right)^{\alpha}}}$
- This leads to rare words being more frequently selected, frequent words less

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple (t, c_{n}), with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
- $p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$
- This leads to rare words being more frequently selected, frequent words less
- Two more hyperparameters on this slide: k and α

Section 2

Encoder-Attention-Decoder Architecture

Different Layer Types

- So far: fully connected layer
- Other layers
- Convolutional layer
- Dropout layer
- Recurrent layer
(Long short-term memory (LSTM) layer)

Different Layer Types

- So far: fully connected layer
- Other layers
- Convolutional layer
- Dropout layer
- Recurrent layer
- Long short-term memory (LSTM) layer
- ...

Sequences are important for NLP

- Many NLP tasks are sequential tasks: The outcome of one item has impact on the next item (e.g., part of speech)
- Recurrent and LSTM layers add new connections
- Instead of processing one item at a time, they look at sequences
- Connections along the sequence (i.e., the neuron knows its output for the previous item)

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

Recurrent Neural Networks

- Feed-forward neural networks: Weights between neurons
- Recurrent neural networks
- Weights between neurons
- Weight(s) for recurrent connections

Recurrent Neural Networks

- Feed-forward neural networks: Weights between neurons
- Recurrent neural networks
- Weights between neurons
- Weight(s) for recurrent connections
- Also possible in two directions

Encoder-Decoder-Architecture

- Often: No 1-to-1 relation between input and output
- l.e.: Not as many output items as input items (e.g., machine translation)

Encoder-Decoder-Architecture

- Often: No 1-to-1 relation between input and output
- I.e.: Not as many output items as input items (e.g., machine translation)
- Encorder-decoder-network has two parts:
- Encoder maps from input data to an internal representation
- Decoder maps from internal representation to the output
- Internal representation
- Use the output or internal state of last recurrent cell
- Not interpretable

From Encoder-Decoder to Attention

From Encoder-Decoder to Attention

Section 3
BERT

Introduction

- BERT has outperformed the state of the art in many tasks
- Breakthrough in natural language processing

Introduction

- BERT has outperformed the state of the art in many tasks
- Breakthrough in natural language processing
- General idea
- Encoder-Attention-Decoder architecture (= transformer)
- Process whole input at once (max. 512 tokens, = bidirectional)
- Pre-training and fine-tuning on different tasks

Jacob Devlin/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4171-4186. DOI: 10.18653/v1/N19-1423. URL: https://aclanthology.org/N19-1423

Pre-Training and Fine-Tuning

- BERT models are trained on huge data sets
- Training one from scratch requires significant resources (time/money)
- Pre-trained models are shared freely
- Recipe: Take a pre-trained model and fine-tune it on your task
- Pre-trained model contains an abstract language representation

Pre-Training and Fine-Tuning

- BERT models are trained on huge data sets
- Training one from scratch requires significant resources (time/money)
- Pre-trained models are shared freely
- Recipe: Take a pre-trained model and fine-tune it on your task
- Pre-trained model contains an abstract language representation
- Fine-tuning
- Any language-related task!

BERT Training Tasks

Masked Language Modeling (MLM)

- Sentence-wise
- 15% of the tokens are "masked" by a special token
- Model predicts these, having access to all other tokens

BERT Training Tasks

Masked Language Modeling (MLM)

- Sentence-wise
- 15% of the tokens are "masked" by a special token
- Model predicts these, having access to all other tokens

Next sentence prediction (NSP)

- Two (masked) sentences are concatenated
- Model has to predict wether second sentence follows on the first or not

Section 4
Summary

Summary

Word2Vec

- Take learned weights as vector representation for input
- Allows "semantic calculation"

BERT

- Split up training process into two
- Pretraining on simple, generic tasks
- Fine-tuning on specific tasks
- Use bidirectional NN architecture
- Use huge data sets for pretraining

References I

Devlin, Jacob/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). "BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding". In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
pp. 4171-4186. DOI: $10.18653 / \mathrm{v} 1 / \mathrm{N} 19-1423$. URL:
https://aclanthology.org/N19-1423.
凅 Jurafsky, Dan/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of October 16, 2019. Prentice Hall.

- Mikolov, Tomáš/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: arXiv cs.CL. Url:
https://arxiv.org/pdf/1301.3781.pdf.

References II

Rikolov, Tomáš/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL:
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf.

