
Natural Language Processing 3: Transfer learning, Transformer models
HS Sprachtechnologie für eine bessere Welt (Winter term 2022/23)

Nils Reiter,
nils.reiter@uni-koeln.de

November 15, 2022

Neural Networks

▶ Neural network consists of layers of neurons
▶ Training goal: Find weights, such that the training instances are correctly predicted
▶ Training method: Gradient descent
▶ Training does not have to be completed in one go

▶ Pausing at any time is possible
▶ Training can continue with a different data set

Reiter NLP 3 November 15, 2022 2 / 36

Section 1

Word2Vec

Word2Vec

Introduction
▶ Embeddings: Words are embedded into a high-dimensional vector space

▶ (and not simply indexed any more)
▶ Word2Vec

▶ A method to represent words in a (high-dimensional) vector space
▶ No end-user task

▶ A vector representation for “köln”
0.0539 -0.0030 0.0203 -0.1084 -0.0099 0.0705 -0.0546 -0.0433 -0.0096 0.0561 -0.0095 0.0280 0.1726 0.0190 0.0369 0.0217 -0.0002
-0.0309 0.0347 -0.0749 -0.0202 0.0151 -0.0195 0.0001 0.0232 0.0243 -0.0170 -0.0090 -0.0108 -0.0943 0.0376 0.1118 -0.0324 0.0148
-0.0033 0.0537 -0.0681 -0.0733 -0.0201 -0.0329 0.1242 0.0324 -0.0744 -0.0149 -0.0047 -0.0484 -0.0483 0.0481 0.0107 0.0101 -0.0704
0.0500 0.0112 -0.0227 0.0499 -0.0259 -0.0441 0.0712 -0.0157 -0.1271 0.0407 -0.0495 -0.0359 0.0202 0.0024 0.0764 0.0196 0.0267
-0.0117 0.0026 0.0171 -0.0121 -0.1374 -0.0370 0.0247 -0.0113 -0.0094 0.0322 -0.0347 -0.0866 0.0042 -0.0014 0.0067 0.0591 0.0009
0.0085 0.0310 0.0479 -0.0511 0.0198 -0.0886 -0.0274 -0.1364 0.0322 -0.1638 -0.0689 0.0016 -0.1039 0.0059 0.0757 -0.0034 0.1013
-0.0034 -0.0065 -0.0468 0.1577 -0.0065 -0.0478 -0.0004 0.0682 0.0045 -0.0607 -0.0590 0.0343 0.0036 -0.1014 -0.0136 -0.0063 0.0801
0.0360 0.0579 -0.0039 0.0975 0.0500 -0.0558 -0.0095 0.0057 -0.0246 0.1070 -0.0186 0.0669 -0.0781 -0.0569 -0.1286 -0.0834 0.0106
-0.0672 -0.0205 0.0613 0.0290 -0.0545 -0.0481 -0.0882 -0.0489 0.0622 -0.0730 -0.0192 -0.0415 -0.0287 0.0218 -0.0427 -0.0046
0.0255 -0.1164 0.0077 -0.0546 -0.0786 0.0000 -0.0456 0.0943 0.0157 -0.0117 -0.0441 -0.0015 -0.0556 -0.0508 0.0088 0.0418 0.0030
-0.1450 -0.0663 0.0800 0.0172 -0.0289 0.1178 -0.0973 0.0888 0.0637 -0.0295 0.0212 0.0100 -0.0860 0.0035 0.0730 0.0425 -0.0080
0.0885 -0.0166 -0.0765 0.0004 -0.0118 0.0138 -0.0093 -0.0606 -0.0447 -0.0746 0.0131 -0.0447 -0.0763 0.0032 0.1181 0.0542 0.0431
-0.0273 0.0547 0.0135 0.0006 -0.0241 -0.0418 0.0278 -0.0821 -0.0572 -0.0039 0.0214 -0.0196 0.0449 -0.0286 0.0204 0.0681 -0.0901
-0.0266 -0.0287 -0.0874 0.0797 -0.0784 -0.0920 0.0380 0.0411 0.0859 0.0369 0.0595 0.0446 0.0363 -0.0353 -0.0044 -0.0061 0.1134
0.1420 -0.0026 -0.0013 0.0033 0.0508 0.0096 -0.0757 0.0085 -0.0099 -0.0384 0.0218 -0.0259 -0.0112 -0.0212 0.0273 0.0532 -0.0278
-0.0634 0.0317 -0.0022 0.0882 -0.0240 0.0031 -0.0370 0.0747 -0.0097 -0.0315 0.0405 0.0124 -0.1416 -0.0768 0.0363 -0.1248 -0.0134
0.0702 -0.0905 -0.0387 0.0683 -0.0784 0.0886 0.0640 0.0611 -0.0199 -0.0447 -0.1331 -0.1247 0.0540 0.0499 -0.0212 -0.0544 -0.1161
-0.0729 0.0894 0.0532 0.0164 -0.0039 -0.0108 -0.0248 -0.1021 -0.0549 -0.0318 0.0309 -0.0691

Reiter NLP 3 November 15, 2022 4 / 36

Word2Vec

Introduction
▶ Embeddings: Words are embedded into a high-dimensional vector space

▶ (and not simply indexed any more)
▶ Word2Vec

▶ A method to represent words in a (high-dimensional) vector space
▶ No end-user task

▶ A vector representation for “köln”
0.0539 -0.0030 0.0203 -0.1084 -0.0099 0.0705 -0.0546 -0.0433 -0.0096 0.0561 -0.0095 0.0280 0.1726 0.0190 0.0369 0.0217 -0.0002
-0.0309 0.0347 -0.0749 -0.0202 0.0151 -0.0195 0.0001 0.0232 0.0243 -0.0170 -0.0090 -0.0108 -0.0943 0.0376 0.1118 -0.0324 0.0148
-0.0033 0.0537 -0.0681 -0.0733 -0.0201 -0.0329 0.1242 0.0324 -0.0744 -0.0149 -0.0047 -0.0484 -0.0483 0.0481 0.0107 0.0101 -0.0704
0.0500 0.0112 -0.0227 0.0499 -0.0259 -0.0441 0.0712 -0.0157 -0.1271 0.0407 -0.0495 -0.0359 0.0202 0.0024 0.0764 0.0196 0.0267
-0.0117 0.0026 0.0171 -0.0121 -0.1374 -0.0370 0.0247 -0.0113 -0.0094 0.0322 -0.0347 -0.0866 0.0042 -0.0014 0.0067 0.0591 0.0009
0.0085 0.0310 0.0479 -0.0511 0.0198 -0.0886 -0.0274 -0.1364 0.0322 -0.1638 -0.0689 0.0016 -0.1039 0.0059 0.0757 -0.0034 0.1013
-0.0034 -0.0065 -0.0468 0.1577 -0.0065 -0.0478 -0.0004 0.0682 0.0045 -0.0607 -0.0590 0.0343 0.0036 -0.1014 -0.0136 -0.0063 0.0801
0.0360 0.0579 -0.0039 0.0975 0.0500 -0.0558 -0.0095 0.0057 -0.0246 0.1070 -0.0186 0.0669 -0.0781 -0.0569 -0.1286 -0.0834 0.0106
-0.0672 -0.0205 0.0613 0.0290 -0.0545 -0.0481 -0.0882 -0.0489 0.0622 -0.0730 -0.0192 -0.0415 -0.0287 0.0218 -0.0427 -0.0046
0.0255 -0.1164 0.0077 -0.0546 -0.0786 0.0000 -0.0456 0.0943 0.0157 -0.0117 -0.0441 -0.0015 -0.0556 -0.0508 0.0088 0.0418 0.0030
-0.1450 -0.0663 0.0800 0.0172 -0.0289 0.1178 -0.0973 0.0888 0.0637 -0.0295 0.0212 0.0100 -0.0860 0.0035 0.0730 0.0425 -0.0080
0.0885 -0.0166 -0.0765 0.0004 -0.0118 0.0138 -0.0093 -0.0606 -0.0447 -0.0746 0.0131 -0.0447 -0.0763 0.0032 0.1181 0.0542 0.0431
-0.0273 0.0547 0.0135 0.0006 -0.0241 -0.0418 0.0278 -0.0821 -0.0572 -0.0039 0.0214 -0.0196 0.0449 -0.0286 0.0204 0.0681 -0.0901
-0.0266 -0.0287 -0.0874 0.0797 -0.0784 -0.0920 0.0380 0.0411 0.0859 0.0369 0.0595 0.0446 0.0363 -0.0353 -0.0044 -0.0061 0.1134
0.1420 -0.0026 -0.0013 0.0033 0.0508 0.0096 -0.0757 0.0085 -0.0099 -0.0384 0.0218 -0.0259 -0.0112 -0.0212 0.0273 0.0532 -0.0278
-0.0634 0.0317 -0.0022 0.0882 -0.0240 0.0031 -0.0370 0.0747 -0.0097 -0.0315 0.0405 0.0124 -0.1416 -0.0768 0.0363 -0.1248 -0.0134
0.0702 -0.0905 -0.0387 0.0683 -0.0784 0.0886 0.0640 0.0611 -0.0199 -0.0447 -0.1331 -0.1247 0.0540 0.0499 -0.0212 -0.0544 -0.1161
-0.0729 0.0894 0.0532 0.0164 -0.0039 -0.0108 -0.0248 -0.1021 -0.0549 -0.0318 0.0309 -0.0691

Reiter NLP 3 November 15, 2022 4 / 36

Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative

b31

b21

b22

b23

x1

x2

x3

x4

x5

Reiter NLP 3 November 15, 2022 5 / 36

Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative

b31

b21

b22

b23

x1

x2

x3

x4

x5

Reiter NLP 3 November 15, 2022 5 / 36

Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative

b31

b21

b22

b23

x1this

x2movie

x3is

x4awesome

x5.

Reiter NLP 3 November 15, 2022 5 / 36

Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative

b31

b21

b22

b23

x117

x224

x32

x4723

x56521

Reiter NLP 3 November 15, 2022 5 / 36

Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative

b31

b21

b22

b23

x1

x2

x3

x4

x5

⟨0.0088, 0.0418, 0.0030,−0.1450⟩

⟨0.0683,−0.0784, 0.0886, 0.0640⟩

⟨−0.0353,−0.0044,−0.0061, 0.1134⟩

⟨−0.0278,−0.0634, 0.0317,−0.0022⟩

⟨−0.0689, 0.0016,−0.1039, 0.0059⟩

Reiter NLP 3 November 15, 2022 5 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen

Reiter NLP 3 November 15, 2022 6 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen

kin
g+

man

Reiter NLP 3 November 15, 2022 6 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen

kin
g-

m
an

Reiter NLP 3 November 15, 2022 6 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen

Reiter NLP 3 November 15, 2022 6 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen
queen’

Reiter NLP 3 November 15, 2022 6 / 36

Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations

−−→king
− −−→man
+ −−−−→woman
≃ −−−→queen

kin
g

man

woman

queen
queen’

duke

du
ch

es
s

duke’

Reiter NLP 3 November 15, 2022 6 / 36

Subsection 1

Generating Word Embeddings with Word2Vec

Word2Vec Generating Word Embeddings with Word2Vec

Literature basis
Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word
Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf

Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

Textbook recommendation
Dan Jurafsky/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of
October 16, 2019. Prentice Hall

Reiter NLP 3 November 15, 2022 8 / 36

https://arxiv.org/pdf/1301.3781.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

Word2Vec Generating Word Embeddings with Word2Vec

Core Idea

▶ Define a classification task for which we have huge training data sets
▶ Given a word, predict predict possible context words
▶ Training data: Any text collection (e.g., Wikipedia)

▶ Train a neural network
▶ Extract learned weights and use as embeddings

Reiter NLP 3 November 15, 2022 9 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict a single word

Skip-Gram
One word used to predict its context

Reiter NLP 3 November 15, 2022 10 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec
Skip-Gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

▶ Classifier:
▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

Reiter NLP 3 November 15, 2022 11 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec
Skip-Gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

Reiter NLP 3 November 15, 2022 11 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec Training

▶ NN training: We start with random vectors, and iteratively improve them
▶ Vector similarity can be measured easily

▶ Dot product / cosine!

▶ “a word is likely to occur near the target if its embedding is similar to the target
embedding” Jurafsky/Martin (JM19, 112)
▶ Probability is based on similarity
▶ Similarity → probability? Sigmoid / logistic function!

Reiter NLP 3 November 15, 2022 12 / 36

Word2Vec Generating Word Embeddings with Word2Vec

When are vectors similar?

▶ Metric that takes two vectors and returns a similarity score
▶ Linear algebra: dot product (“Skalarprodukt”)

a⃗ · b⃗ =
N∑

i=1

aibi

Reiter NLP 3 November 15, 2022 13 / 36

Word2Vec Generating Word Embeddings with Word2Vec

When are vectors similar?

▶ Metric that takes two vectors and returns a similarity score
▶ Linear algebra: dot product (“Skalarprodukt”)

a⃗ · b⃗ =

N∑
i=1

aibi

Reiter NLP 3 November 15, 2022 13 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter NLP 3 November 15, 2022 14 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter NLP 3 November 15, 2022 14 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195

Reiter NLP 3 November 15, 2022 14 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)

Reiter NLP 3 November 15, 2022 15 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)

Reiter NLP 3 November 15, 2022 15 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)

Reiter NLP 3 November 15, 2022 15 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)

Reiter NLP 3 November 15, 2022 15 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)

Reiter NLP 3 November 15, 2022 15 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Cosine Similarity Metric

cos∢(⃗a, b⃗) =
∑N

i=1 aibi∑N
i=1 a2i

∑N
i=1 b2i

▶ Independent of length (measures the angle between the vectors)
▶ Simple to calculate

Reiter NLP 3 November 15, 2022 16 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) =
1

1+e−(1∗x+0) e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) =
1

1+e−(1∗x+0)

y = 1
1+e−(10∗x−15)

e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) =
1

1+e−(1∗x+0)

y = 1
1+e−(10∗x−15)

y = 1
1+e−(10∗x+15)

e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) =
1

1+e−(1∗x+0)

y = 1
1+e−(10∗x−15)

y = 1
1+e−(10∗x+15)

y = 1
1+e−(100∗x−10)

e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) =
1

1+e−(1∗x+0)

y = 1
1+e−(10∗x−15)

y = 1
1+e−(10∗x+15)

y = 1
1+e−(100∗x−10)

e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)

Reiter NLP 3 November 15, 2022 17 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

Reiter NLP 3 November 15, 2022 18 / 36

Nils Reiter

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!

Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

Reiter NLP 3 November 15, 2022 18 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

Reiter NLP 3 November 15, 2022 18 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ciReiter NLP 3 November 15, 2022 18 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ So far, we have assumed that we have vector t⃗ for word t, but where do they come from?
▶ Basic gradient descent: We start randomly, and iteratively improve

Reiter NLP 3 November 15, 2022 19 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other

▶ Negative sampling
▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)
▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less
▶ Two more hyperparameters on this slide: k and α

Reiter NLP 3 November 15, 2022 20 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less
▶ Two more hyperparameters on this slide: k and α

Reiter NLP 3 November 15, 2022 20 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)
▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less

▶ Two more hyperparameters on this slide: k and α

Reiter NLP 3 November 15, 2022 20 / 36

Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)
▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less
▶ Two more hyperparameters on this slide: k and α

Reiter NLP 3 November 15, 2022 20 / 36

Section 2

Encoder-Attention-Decoder Architecture

Encoder-Attention-Decoder Architecture

Different Layer Types
▶ So far: fully connected layer
▶ Other layers

▶ Convolutional layer
▶ Dropout layer
▶ Recurrent layer
▶ Long short-term memory (LSTM) layer
▶ …

Sequences are important for NLP
▶ Many NLP tasks are sequential tasks: The outcome of one item has impact on the next

item (e.g., part of speech)
▶ Recurrent and LSTM layers add new connections
▶ Instead of processing one item at a time, they look at sequences
▶ Connections along the sequence (i.e., the neuron knows its output for the previous item)

Reiter NLP 3 November 15, 2022 22 / 36

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Encoder-Attention-Decoder Architecture

Different Layer Types
▶ So far: fully connected layer
▶ Other layers

▶ Convolutional layer
▶ Dropout layer
▶ Recurrent layer
▶ Long short-term memory (LSTM) layer
▶ …

Sequences are important for NLP
▶ Many NLP tasks are sequential tasks: The outcome of one item has impact on the next

item (e.g., part of speech)
▶ Recurrent and LSTM layers add new connections
▶ Instead of processing one item at a time, they look at sequences
▶ Connections along the sequence (i.e., the neuron knows its output for the previous item)

Reiter NLP 3 November 15, 2022 22 / 36

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

y

x1

x2

b1

b2

b3

Reiter NLP 3 November 15, 2022 23 / 36

Nils Reiter

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

se
qu

en
ce

y

x1

x2

b1

b2

b3

Reiter NLP 3 November 15, 2022 24 / 36

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

se
qu

en
ce

y

x1

x2

b1

b2

b3

y

x1

x2

b1

b2

b3

recurrent connection

Reiter NLP 3 November 15, 2022 24 / 36

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

se
qu

en
ce

y

x1

x2

b1

b2

b3

y

x1

x2

b1

b2

b3

recurrent connection

y

x1

x2

b1

b2

b3

Reiter NLP 3 November 15, 2022 24 / 36

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

▶ Feed-forward neural networks: Weights between neurons
▶ Recurrent neural networks

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Also possible in two directions

Reiter NLP 3 November 15, 2022 25 / 36

Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

▶ Feed-forward neural networks: Weights between neurons
▶ Recurrent neural networks

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Also possible in two directions

Reiter NLP 3 November 15, 2022 25 / 36

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Encoder-Attention-Decoder Architecture

Encoder-Decoder-Architecture

▶ Often: No 1-to-1 relation between input and output
▶ I.e.: Not as many output items as input items (e.g., machine translation)

▶ Encorder-decoder-network has two parts:
▶ Encoder maps from input data to an internal representation
▶ Decoder maps from internal representation to the output

▶ Internal representation
▶ Use the output or internal state of last recurrent cell
▶ Not interpretable

Reiter NLP 3 November 15, 2022 26 / 36

Encoder-Attention-Decoder Architecture

Encoder-Decoder-Architecture

▶ Often: No 1-to-1 relation between input and output
▶ I.e.: Not as many output items as input items (e.g., machine translation)

▶ Encorder-decoder-network has two parts:
▶ Encoder maps from input data to an internal representation
▶ Decoder maps from internal representation to the output

▶ Internal representation
▶ Use the output or internal state of last recurrent cell
▶ Not interpretable

Reiter NLP 3 November 15, 2022 26 / 36

Encoder-Attention-Decoder Architecture

From Encoder-Decoder to Attention
Encoder Decoder

In
pu

ts
eq

ue
nc

e
X1

X2

X3

Y0

Y1

Y2

Y3

O
utputsequence

Reiter NLP 3 November 15, 2022 27 / 36

Encoder-Attention-Decoder Architecture

From Encoder-Decoder to Attention
Encoder DecoderAttention
In

pu
ts

eq
ue

nc
e

X1

X2

X3

Y0+

Y1+

Y2+

Y3+

O
utputsequence

Reiter NLP 3 November 15, 2022 28 / 36

Section 3

BERT

BERT

Introduction

▶ BERT has outperformed the state of the art in many tasks
▶ Breakthrough in natural language processing

▶ General idea
▶ Encoder-Attention-Decoder architecture (= transformer)
▶ Process whole input at once (max. 512 tokens, = bidirectional)
▶ Pre-training and fine-tuning on different tasks

Jacob Devlin/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://aclanthology.org/N19-1423

Reiter NLP 3 November 15, 2022 30 / 36

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423

BERT

Introduction

▶ BERT has outperformed the state of the art in many tasks
▶ Breakthrough in natural language processing
▶ General idea

▶ Encoder-Attention-Decoder architecture (= transformer)
▶ Process whole input at once (max. 512 tokens, = bidirectional)
▶ Pre-training and fine-tuning on different tasks

Jacob Devlin/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://aclanthology.org/N19-1423

Reiter NLP 3 November 15, 2022 30 / 36

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423

BERT

Pre-Training and Fine-Tuning

▶ BERT models are trained on huge data sets
▶ Training one from scratch requires significant resources (time/money)
▶ Pre-trained models are shared freely
▶ Recipe: Take a pre-trained model and fine-tune it on your task

▶ Pre-trained model contains an abstract language representation

▶ Fine-tuning
▶ Any language-related task!

Reiter NLP 3 November 15, 2022 31 / 36

BERT

Pre-Training and Fine-Tuning

▶ BERT models are trained on huge data sets
▶ Training one from scratch requires significant resources (time/money)
▶ Pre-trained models are shared freely
▶ Recipe: Take a pre-trained model and fine-tune it on your task

▶ Pre-trained model contains an abstract language representation
▶ Fine-tuning

▶ Any language-related task!

Reiter NLP 3 November 15, 2022 31 / 36

BERT

BERT Training Tasks

Masked Language Modeling (MLM)
▶ Sentence-wise
▶ 15% of the tokens are “masked” by a special token
▶ Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
▶ Two (masked) sentences are concatenated
▶ Model has to predict wether second sentence follows on the first or not

Reiter NLP 3 November 15, 2022 32 / 36

BERT

BERT Training Tasks

Masked Language Modeling (MLM)
▶ Sentence-wise
▶ 15% of the tokens are “masked” by a special token
▶ Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
▶ Two (masked) sentences are concatenated
▶ Model has to predict wether second sentence follows on the first or not

Reiter NLP 3 November 15, 2022 32 / 36

Section 4

Summary

Summary

Summary

Word2Vec
▶ Take learned weights as vector representation for input
▶ Allows “semantic calculation”

BERT
▶ Split up training process into two

▶ Pretraining on simple, generic tasks
▶ Fine-tuning on specific tasks

▶ Use bidirectional NN architecture
▶ Use huge data sets for pretraining

Reiter NLP 3 November 15, 2022 34 / 36

References I

Devlin, Jacob/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding”. In:
Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers). Minneapolis, Minnesota: Association for Computational Linguistics,
pp. 4171–4186. doi: 10.18653/v1/N19-1423. url:
https://aclanthology.org/N19-1423.
Jurafsky, Dan/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of
October 16, 2019. Prentice Hall.
Mikolov, Tomáš/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of
Word Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf.

Reiter NLP 3 November 15, 2022 35 / 36

https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://arxiv.org/pdf/1301.3781.pdf

References II

Mikolov, Tomáš/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran
Associates, Inc., pp. 3111–3119. url:
http://papers.nips.cc/paper/5021-distributed-representations-of-words-
and-phrases-and-their-compositionality.pdf.

Reiter NLP 3 November 15, 2022 36 / 36

http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf

	Word2Vec
	Generating Word Embeddings with Word2Vec

	Encoder-Attention-Decoder Architecture
	BERT
	Summary
	Appendix
	References

