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Neural Networks

▶ Neural network consists of layers of neurons
▶ Training goal: Find weights, such that the training instances are correctly predicted
▶ Training method: Gradient descent
▶ Training does not have to be completed in one go

▶ Pausing at any time is possible
▶ Training can continue with a different data set
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Section 1

Word2Vec



Word2Vec

Introduction
▶ Embeddings: Words are embedded into a high-dimensional vector space

▶ (and not simply indexed any more)
▶ Word2Vec

▶ A method to represent words in a (high-dimensional) vector space
▶ No end-user task

▶ A vector representation for “köln”
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Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative
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Word2Vec

Embeddings
Why is that useful?

1 Input Representation for Neural Networks
▶ Example Task: Sentiment Analysis
▶ Take a sentence, classify it as positive or negative
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⟨0.0088, 0.0418, 0.0030,−0.1450⟩

⟨0.0683,−0.0784, 0.0886, 0.0640⟩
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Word2Vec

Embeddings
Why is that useful?

2 For semantic calculations
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− −−→man
+ −−−−→woman
≃ −−−→queen
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Subsection 1

Generating Word Embeddings with Word2Vec



Word2Vec Generating Word Embeddings with Word2Vec

Literature basis
Two very influential papers by Mikolov et al.
Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word
Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf

Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26. Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

Textbook recommendation
Dan Jurafsky/James H. Martin (2019). Speech and Language Processing. 3rd ed. Draft of
October 16, 2019. Prentice Hall
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Word2Vec Generating Word Embeddings with Word2Vec

Core Idea

▶ Define a classification task for which we have huge training data sets
▶ Given a word, predict predict possible context words
▶ Training data: Any text collection (e.g., Wikipedia)

▶ Train a neural network
▶ Extract learned weights and use as embeddings 
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Word2Vec Generating Word Embeddings with Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict a single word

Skip-Gram
One word used to predict its context

Reiter NLP 3 November 15, 2022 10 / 36



Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec
Skip-Gram

▶ Context: ±2 words around target word t
... lemon, a [tablespoon of apricot jam, a] pinch ...

c1 c2 t c3 c4

▶ Classifier:
▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)
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Word2Vec Generating Word Embeddings with Word2Vec

Word2Vec Training

▶ NN training: We start with random vectors, and iteratively improve them
▶ Vector similarity can be measured easily

▶ Dot product / cosine! 

▶ “a word is likely to occur near the target if its embedding is similar to the target
embedding” Jurafsky/Martin (JM19, 112)
▶ Probability is based on similarity
▶ Similarity → probability? Sigmoid / logistic function! 
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Word2Vec Generating Word Embeddings with Word2Vec

When are vectors similar?

▶ Metric that takes two vectors and returns a similarity score
▶ Linear algebra: dot product (“Skalarprodukt”)

a⃗ · b⃗ =
N∑

i=1

aibi
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product
Example

a⃗ = [0, 0, 1, 1]

b⃗ = [0, 0, 1, 0.95]

a⃗ · b⃗ = 1.95

a⃗′ = 10a⃗ = [0, 0, 10, 10]

b⃗′ = 10⃗b = [0, 0, 10, 9.5]

a⃗′ · b⃗′ = 195
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Word2Vec Generating Word Embeddings with Word2Vec

Dot product as similarity metric?
▶ Favours high frequent words

▶ For the word ‘Cologne’, it’s easier to be similar to ‘the’ than to ‘Düsseldorf’
▶ Because ‘the’ is more frequent (= has more higher numbers in its vector) than ‘Cologne’

▶ Missing: Normalisation for vector length
▶ Normalisation can mostly done by dividing by something

▶ Normalised dot product: Divide by vector lengths

a⃗ · b⃗ =

N∑
i=1

aibi

a⃗ · b⃗
|⃗a||⃗b|

=

∑N
i=1 aibi

|⃗a||⃗b|

=

∑N
i=1 aibi∑N

i=1 a2i
∑N

i=1 b2i
= cos∢(⃗a, b⃗)
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Word2Vec Generating Word Embeddings with Word2Vec

Cosine Similarity Metric

cos∢(⃗a, b⃗) =
∑N

i=1 aibi∑N
i=1 a2i

∑N
i=1 b2i

▶ Independent of length (measures the angle between the vectors)
▶ Simple to calculate
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Word2Vec Generating Word Embeddings with Word2Vec

The Logistic Function
Turn Similarities into Probabilities

x

y

1

1 2 4-1-2-5

y = 1
1+e−x = 1

1+e−(ax+b) e =

∞∑
n=0

1

n! = 2.71828

(Euler’s Number)
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

(this is different from JM19)

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram

▶ So far, we have assumed that we have vector t⃗ for word t, but where do they come from?
▶ Basic gradient descent: We start randomly, and iteratively improve
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Word2Vec Generating Word Embeddings with Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other

▶ Negative sampling
▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)
▶ Select noise words according to their weighted frequency
▶ pα(w) = count(w)α∑

w′ count(w′)α

▶ This leads to rare words being more frequently selected, frequent words less
▶ Two more hyperparameters on this slide: k and α
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Section 2

Encoder-Attention-Decoder Architecture



Encoder-Attention-Decoder Architecture

Different Layer Types
▶ So far: fully connected layer
▶ Other layers

▶ Convolutional layer
▶ Dropout layer
▶ Recurrent layer
▶ Long short-term memory (LSTM) layer
▶ …

Sequences are important for NLP
▶ Many NLP tasks are sequential tasks: The outcome of one item has impact on the next

item (e.g., part of speech)
▶ Recurrent and LSTM layers add new connections
▶ Instead of processing one item at a time, they look at sequences
▶ Connections along the sequence (i.e., the neuron knows its output for the previous item)
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks
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Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

▶ Feed-forward neural networks: Weights between neurons
▶ Recurrent neural networks

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Also possible in two directions

Reiter NLP 3 November 15, 2022 25 / 36



Encoder-Attention-Decoder Architecture

Recurrent Neural Networks

▶ Feed-forward neural networks: Weights between neurons
▶ Recurrent neural networks

▶ Weights between neurons
▶ Weight(s) for recurrent connections

▶ Also possible in two directions

Reiter NLP 3 November 15, 2022 25 / 36

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Encoder-Attention-Decoder Architecture

Encoder-Decoder-Architecture

▶ Often: No 1-to-1 relation between input and output
▶ I.e.: Not as many output items as input items (e.g., machine translation)

▶ Encorder-decoder-network has two parts:
▶ Encoder maps from input data to an internal representation
▶ Decoder maps from internal representation to the output

▶ Internal representation
▶ Use the output or internal state of last recurrent cell
▶ Not interpretable
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Encoder-Attention-Decoder Architecture

From Encoder-Decoder to Attention
Encoder Decoder
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Section 3

BERT



BERT

Introduction

▶ BERT has outperformed the state of the art in many tasks
▶ Breakthrough in natural language processing

▶ General idea
▶ Encoder-Attention-Decoder architecture (= transformer)
▶ Process whole input at once (max. 512 tokens, = bidirectional)
▶ Pre-training and fine-tuning on different tasks

Jacob Devlin/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota:
Association for Computational Linguistics, pp. 4171–4186. doi: 10.18653/v1/N19-1423.
url: https://aclanthology.org/N19-1423
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BERT

Pre-Training and Fine-Tuning

▶ BERT models are trained on huge data sets
▶ Training one from scratch requires significant resources (time/money)
▶ Pre-trained models are shared freely
▶ Recipe: Take a pre-trained model and fine-tune it on your task

▶ Pre-trained model contains an abstract language representation

▶ Fine-tuning
▶ Any language-related task!
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BERT

BERT Training Tasks

Masked Language Modeling (MLM)
▶ Sentence-wise
▶ 15% of the tokens are “masked” by a special token
▶ Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
▶ Two (masked) sentences are concatenated
▶ Model has to predict wether second sentence follows on the first or not
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Summary

Summary

Word2Vec
▶ Take learned weights as vector representation for input
▶ Allows “semantic calculation”

BERT
▶ Split up training process into two

▶ Pretraining on simple, generic tasks
▶ Fine-tuning on specific tasks

▶ Use bidirectional NN architecture
▶ Use huge data sets for pretraining
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