
Session 4: Data types, casting, javadoc, conditionals
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

November 2, 2022

Section 1

Exercise 3

Exercise 3

Exercise 03: isOdd(int)

1 public class Exercise03 {
2
3 public static void main(String[] args) {
4 System.out.println(isOdd(3)); // true
5 System.out.println(isOdd(1)); // true
6 System.out.println(isOdd(457483841)); // true
7 System.out.println(isOdd(12)); // false
8 }
9

10 static boolean isOdd(int number) {
11 return number % 2 == 1; // shortest version, operator precedence relevant!
12 }
13
14 }

Operator precedence

Reiter Session 4: Data types, casting, javadoc, conditionals 4 / 27

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Section 2

Data Types, Part 2

Data Types, Part 2

Primitive Data Types

Keyword Full name Values
boolean Binary value true , false

byte 1 Byte (= 8 bit) −128 to 127

short short integer (16 bit) −32 768 to 32 767
int Integer (32 bit) −2 147 483 648 to 2 147 483 647
long long integer (64 bit) −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

char Character in UTF-16 '\u0000' to '\uffff' (65536 = 216 symbols)
float Decimal numbers (32 bit) ±1.4× 10−45 to ±3.4× 1038

double Decimal numbers (64 bit) ±4.9× 10−324 to ±1.8× 10308

Table: All primitive data types in Java

Reiter Session 4: Data types, casting, javadoc, conditionals 6 / 27

Nils Reiter

Data Types, Part 2

Integral Data Types
Literals

▶ By default: full numbers within expressions are of type int

1 int myIntValue = 27; // literal int value assigned to an int variable
2 byte myByteValue = 27; // literal int value assigned to a byte variable
3 long myLongValue = 27; // literal int assigned to a long variable
4
5 long myLargeLongValue = 2700000000000000000L;
6 // append L to enforce a long literal
7 long mySmallLongValue = 27L; // also works for small numbers

▶ Why can we assign an int literal to a byte/long/short variable?
Implicit casting (see below)!

Reiter Session 4: Data types, casting, javadoc, conditionals 7 / 27

Data Types, Part 2

Character Data

Keyword Full name Values
char Character in UTF-16 '\u0000' to '\uffff' (65536 = 216 symbols)

▶ Characters are represented in computers by enumerating them
▶ American Standard Code for Information Interchange (ASCII) Wikipedia: ASCII

▶ 128 characters, including control symbols for telegraphy
▶ No German Umlauts etc.

▶ Unicode: A single standard to represent all characters from all languages unicode.org

▶ 149 186 characters, including CJK ideographs Unicode 15.0 charts

▶ Complex enumeration scheme

Reiter Session 4: Data types, casting, javadoc, conditionals 8 / 27

https://en.wikipedia.org/wiki/ASCII
https://home.unicode.org
https://www.unicode.org/charts/

Data Types, Part 2

Character Data

Keyword Full name Values
char Character in UTF-16 '\u0000' to '\uffff' (65536 = 216 symbols)

▶ Characters are represented in computers by enumerating them
▶ American Standard Code for Information Interchange (ASCII) Wikipedia: ASCII

▶ 128 characters, including control symbols for telegraphy
▶ No German Umlauts etc.

▶ Unicode: A single standard to represent all characters from all languages unicode.org

▶ 149 186 characters, including CJK ideographs Unicode 15.0 charts

▶ Complex enumeration scheme

Reiter Session 4: Data types, casting, javadoc, conditionals 8 / 27

https://en.wikipedia.org/wiki/ASCII
https://home.unicode.org
https://www.unicode.org/charts/
Nils Reiter

Nils Reiter

Data Types, Part 2

Character Data
char data type

▶ char represents a single character in two bytes (16 bit)
▶ Literal char values are written with single quotes: char ch = 'a';

▶ Unicode code points can also be used: char ch = '\u1A0A'; //"BUGINESE LETTER NA"
▶ 1A0Ab=16 = 6666b=10

▶ Integer values also possible: char ch = 121; (implicit cast)
▶ char is not the same as String

 Not all Unicode characters can be represented as a single char value
▶ Because Unicode now defines more than 216 characters
▶ Be aware that this might be a problem

Reiter Session 4: Data types, casting, javadoc, conditionals 9 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Data Types, Part 2

Character Data
char data type

▶ char represents a single character in two bytes (16 bit)
▶ Literal char values are written with single quotes: char ch = 'a';

▶ Unicode code points can also be used: char ch = '\u1A0A'; //"BUGINESE LETTER NA"
▶ 1A0Ab=16 = 6666b=10

▶ Integer values also possible: char ch = 121; (implicit cast)
▶ char is not the same as String

 Not all Unicode characters can be represented as a single char value
▶ Because Unicode now defines more than 216 characters
▶ Be aware that this might be a problem

Reiter Session 4: Data types, casting, javadoc, conditionals 9 / 27

Nils Reiter

Data Types, Part 2

Decimal Numbers

▶ Real numbers challenging for computers
▶ Floating-point arithmetic developed in Mesopotamia (ca. 700 BCE!)
▶ First used in computer by Zuse in 1937/1941

▶ Naive idea: Two integer values, before and after decimal point
▶ Wasteful and complex to implement mathematical operations

▶ Better idea: Represent number in scientific notation, store digits and exponent separately
▶ E.g.: 123.345 = 123345 ∗ 10−3 (there are many details left out here)

Reiter Session 4: Data types, casting, javadoc, conditionals 10 / 27

Data Types, Part 2

Decimal Numbers

▶ Real numbers challenging for computers
▶ Floating-point arithmetic developed in Mesopotamia (ca. 700 BCE!)
▶ First used in computer by Zuse in 1937/1941
▶ Naive idea: Two integer values, before and after decimal point

▶ Wasteful and complex to implement mathematical operations

▶ Better idea: Represent number in scientific notation, store digits and exponent separately
▶ E.g.: 123.345 = 123345 ∗ 10−3 (there are many details left out here)

Reiter Session 4: Data types, casting, javadoc, conditionals 10 / 27

Nils Reiter

Data Types, Part 2

Decimal Numbers

▶ Real numbers challenging for computers
▶ Floating-point arithmetic developed in Mesopotamia (ca. 700 BCE!)
▶ First used in computer by Zuse in 1937/1941
▶ Naive idea: Two integer values, before and after decimal point

▶ Wasteful and complex to implement mathematical operations
▶ Better idea: Represent number in scientific notation, store digits and exponent separately

▶ E.g.: 123.345 = 123345 ∗ 10−3 (there are many details left out here)

Reiter Session 4: Data types, casting, javadoc, conditionals 10 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Data Types, Part 2

Decimal Numbers in Java

Keyword Full name Values
float Decimal numbers (32 bit) ±1.4× 10−45 to ±3.4× 1038

double Decimal numbers (64 bit) ±4.9× 10−324 to ±1.8× 10308

Table: Floating point types

▶ By default: Decimal numbers interpreted as double
1 float myFloatVariable = 3.0; // literal double, no implicit cast: compile error!
2 double myDoubleVariable = 3.0; // literal double
3 float myExplicitFloatVariable = 5.0f; // literal float value
4 double myDoubleVariable = 5.0f; // literal float casted into a double

Reiter Session 4: Data types, casting, javadoc, conditionals 11 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Data Types, Part 2

Decimal Numbers in Java

Keyword Full name Values
float Decimal numbers (32 bit) ±1.4× 10−45 to ±3.4× 1038

double Decimal numbers (64 bit) ±4.9× 10−324 to ±1.8× 10308

Table: Floating point types

▶ By default: Decimal numbers interpreted as double

1 float myFloatVariable = 3.0; // literal double, no implicit cast: compile error!
2 double myDoubleVariable = 3.0; // literal double
3 float myExplicitFloatVariable = 5.0f; // literal float value
4 double myDoubleVariable = 5.0f; // literal float casted into a double

Reiter Session 4: Data types, casting, javadoc, conditionals 11 / 27

Data Types, Part 2

Decimal Numbers in Java

Keyword Full name Values
float Decimal numbers (32 bit) ±1.4× 10−45 to ±3.4× 1038

double Decimal numbers (64 bit) ±4.9× 10−324 to ±1.8× 10308

Table: Floating point types

▶ By default: Decimal numbers interpreted as double
1 float myFloatVariable = 3.0; // literal double, no implicit cast: compile error!
2 double myDoubleVariable = 3.0; // literal double
3 float myExplicitFloatVariable = 5.0f; // literal float value
4 double myDoubleVariable = 5.0f; // literal float casted into a double

Reiter Session 4: Data types, casting, javadoc, conditionals 11 / 27

Data Types, Part 2

Division, again

▶ Dividing two int numbers yields unexpected results (last week)
▶ If one number is a floating-point-number, we get decimal division
1 int a = 7;
2 int bInt = 14;
3 System.out.println(a / bInt); // prints 0
4
5 double bFloat = 14.0;
6 System.out.println(7 / bFloat); // prints 0.5

Reiter Session 4: Data types, casting, javadoc, conditionals 12 / 27

Nils Reiter

Data Types, Part 2

Floating Point Complexities

▶ Floating point numbers are approximations
▶ Not all values can be represented

▶ Some calculations lead to erroneous results
E.g., 1.25f - 1.05f //yields -0.20000005

▶ Java floating values have a negative zero
E.g., -0f and 0f are differently represented in memory, but defined as equal

▶ In general: Do not use == with floating point numbers
▶ Check if some result is ‘close enough’ at the expected result

Reiter Session 4: Data types, casting, javadoc, conditionals 13 / 27

Nils Reiter

Data Types, Part 2

Floating Point Complexities

▶ Floating point numbers are approximations
▶ Not all values can be represented

▶ Some calculations lead to erroneous results
E.g., 1.25f - 1.05f //yields -0.20000005

▶ Java floating values have a negative zero
E.g., -0f and 0f are differently represented in memory, but defined as equal

▶ In general: Do not use == with floating point numbers
▶ Check if some result is ‘close enough’ at the expected result

Reiter Session 4: Data types, casting, javadoc, conditionals 13 / 27

Data Types, Part 2

Floating Point Complexities

▶ Floating point numbers are approximations
▶ Not all values can be represented

▶ Some calculations lead to erroneous results
E.g., 1.25f - 1.05f //yields -0.20000005

▶ Java floating values have a negative zero
E.g., -0f and 0f are differently represented in memory, but defined as equal

▶ In general: Do not use == with floating point numbers
▶ Check if some result is ‘close enough’ at the expected result

Reiter Session 4: Data types, casting, javadoc, conditionals 13 / 27

Nils Reiter

Section 3

Casting

Casting

Casting

▶ Converting from one type into another
▶ Explicit casting: Target type in parentheses

1 char myChar = 'a';
2 int myInteger = (int) myChar;
3 double d = (double) myInteger;

▶ Not all types can be cast into all other types
▶ E.g., no casting from int to boolean

▶ Cast operator is an operator, i.e.: Can be used in expressions
▶ boolean b = (double) ((int)'a'+ 5) / 17 >= 5.0

Reiter Session 4: Data types, casting, javadoc, conditionals 15 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Casting

Implicit Casting

▶ If needed and if possible without information loss
▶ double can represent more numbers than float

▶ float to double : No information loss
▶ double to float : Potential loss

▶ Explicit casting possible, use at your own risk
▶ long can represent more numbers than short

▶ short to long : No information loss
▶ long to short : Potential loss

▶ Explicit casting possible, use at your own risk

Reiter Session 4: Data types, casting, javadoc, conditionals 16 / 27

Nils Reiter

Nils Reiter

Section 4

Javadoc

Javadoc

Javadoc

▶ Comments, so far: /* ... */ and // ...
▶ Implementation comments about your code

▶ New comment type: /** ... */
▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Data types, casting, javadoc, conditionals 18 / 27

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)
Nils Reiter

Javadoc

Javadoc

▶ Comments, so far: /* ... */ and // ...
▶ Implementation comments about your code

▶ New comment type: /** ... */
▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Data types, casting, javadoc, conditionals 18 / 27

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)
Nils Reiter

Javadoc

Javadoc

▶ Comments, so far: /* ... */ and // ...
▶ Implementation comments about your code

▶ New comment type: /** ... */
▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Data types, casting, javadoc, conditionals 18 / 27

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)

Javadoc

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse

▶ Eclipse can generate Javadoc HTML files
▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Data types, casting, javadoc, conditionals 19 / 27

Javadoc

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse

▶ Eclipse can generate Javadoc HTML files
▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Data types, casting, javadoc, conditionals 19 / 27

Javadoc

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse
▶ Eclipse can generate Javadoc HTML files

▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Data types, casting, javadoc, conditionals 19 / 27

Section 5

Conditionals

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed

▶ Multiple forms:
if (EXPRESSION) STATEMENT
if (EXPRESSION) STATEMENT else STATEMENT
▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Data types, casting, javadoc, conditionals 21 / 27

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed
▶ Multiple forms:

if (EXPRESSION) STATEMENT
if (EXPRESSION) STATEMENT else STATEMENT
▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Data types, casting, javadoc, conditionals 21 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed
▶ Multiple forms:

if (EXPRESSION) STATEMENT
if (EXPRESSION) STATEMENT else STATEMENT
▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Data types, casting, javadoc, conditionals 21 / 27

Nils Reiter

Nils Reiter

Nils Reiter

demo

Conditionals

Conditional Expression

▶ The if-statement is a statement
▶ Sometimes, it’s useful to make such a distinction in the form of an expression
▶ All other operators are unitary or binary (i.e.: take one or two values)
▶ Ternary operator has three parts: EXP1 ? EXP2 : EXP3

▶ EXP1 must evaluate to a boolean value, EXP2 and EXP3 must evaluate to the same type

▶ short daysInYear = isLeapYear() ? 366 : 365;

Reiter Session 4: Data types, casting, javadoc, conditionals 23 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Conditionals

Conditional Expression

▶ The if-statement is a statement
▶ Sometimes, it’s useful to make such a distinction in the form of an expression
▶ All other operators are unitary or binary (i.e.: take one or two values)
▶ Ternary operator has three parts: EXP1 ? EXP2 : EXP3

▶ EXP1 must evaluate to a boolean value, EXP2 and EXP3 must evaluate to the same type
▶ short daysInYear = isLeapYear() ? 366 : 365;

Reiter Session 4: Data types, casting, javadoc, conditionals 23 / 27

Nils Reiter

Conditionals

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement

1 switch (EXPRESSION) {
2 case CONSTANT: STATEMENT; break;
3 case CONSTANT2, CONSTANT3: STATEMENT; break;
4 default: STATEMENT
5 }

Reiter Session 4: Data types, casting, javadoc, conditionals 24 / 27

Conditionals

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement
1 switch (EXPRESSION) {
2 case CONSTANT: STATEMENT; break;
3 case CONSTANT2, CONSTANT3: STATEMENT; break;
4 default: STATEMENT
5 }

Reiter Session 4: Data types, casting, javadoc, conditionals 24 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

demo

Conditionals

Switch-Statement
Example

1 static short daysInMonth(byte month) {
2 switch(month) {
3 case 2: return 28; // no break needed, because of return
4 case 4: // fall through to case 11
5 case 6:
6 case 9:
7 case 11: return 30;
8 default: return 31;
9 }

10 }

Reiter Session 4: Data types, casting, javadoc, conditionals 26 / 27

Section 6

Exercise

	Exercise 3
	Data Types, Part 2
	Casting
	Javadoc
	Conditionals
	Exercise

