
Session 4: Loops
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

November 9, 2022

Nils Reiter



Section 1

Exercise 4



Section 2

Recap: Switch-Statement



Recap: Switch-Statement

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement

1 switch (EXPRESSION) {
2 case CONSTANT:
3 STATEMENT;
4 break;
5 case CONSTANT2:
6 case CONSTANT3:
7 STATEMENT;
8 break;
9 default:

10 STATEMENT
11 }

This variant is available
in later Java versions:

1 // ...
2 switch (EXPRESSION) {
3 // ...
4 case CONSTANT2 , CONSTANT3:
5 STATEMENT;
6 break;
7 // ...
8 }

Reiter Session 4: Loops 4 / 19



Recap: Switch-Statement

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement
1 switch (EXPRESSION) {
2 case CONSTANT:
3 STATEMENT;
4 break;
5 case CONSTANT2:
6 case CONSTANT3:
7 STATEMENT;
8 break;
9 default:

10 STATEMENT
11 }

This variant is available
in later Java versions:

1 // ...
2 switch (EXPRESSION) {
3 // ...
4 case CONSTANT2 , CONSTANT3:
5 STATEMENT;
6 break;
7 // ...
8 }

Reiter Session 4: Loops 4 / 19



Recap: Switch-Statement

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement
1 switch (EXPRESSION) {
2 case CONSTANT:
3 STATEMENT;
4 break;
5 case CONSTANT2:
6 case CONSTANT3:
7 STATEMENT;
8 break;
9 default:

10 STATEMENT
11 }

This variant is available
in later Java versions:

1 // ...
2 switch (EXPRESSION) {
3 // ...
4 case CONSTANT2 , CONSTANT3:
5 STATEMENT;
6 break;
7 // ...
8 }

Reiter Session 4: Loops 4 / 19



Recap: Switch-Statement

Switch-Statement
Example

1 static short daysInMonth(byte month) {
2 switch(month) {
3 case 2: return 28; // no break needed, because of return
4 case 4: // fall through to case 11
5 case 6:
6 case 9:
7 case 11: return 30;
8 default: return 31;
9 }

10 }

Reiter Session 4: Loops 5 / 19



Recap: Switch-Statement

Break vs. Return

▶ switch in a function: Similar effects of break and return

▶ But conceptually very different
▶ break

▶ Stops execution of the switch statement
▶ Control flow continues after } of switch
▶ If not used: Following case will also be executed

▶ return
▶ Stops execution of a function and returns some value
▶ Doesn’t matter if embedded in other things

Reiter Session 4: Loops 6 / 19



Recap: Switch-Statement

Break vs. Return
Two equivalent cases

1 static int daysInMonth(int month) {
2 switch (month) {
3 case 2:
4 return 28;
5 case 4:
6 case 6:
7 case 9:
8 case 11:
9 return 30;

10 default:
11 return 31;
12 }
13 }

1 static int daysInMonth(int month) {
2 float retValue = 31;
3 switch (month) {
4 case 2:
5 retValue = 28;
6 break;
7 case 4:
8 case 6:
9 case 9:

10 case 11:
11 retValue = 30;
12 break;
13 }
14 return retValue;
15 }

Reiter Session 4: Loops 7 / 19



Section 3

Loops



Loops

Introduction

▶ Executing code repeatedly
▶ What do we need?

▶ The code to be executed (i.e., a code block)
▶ Conditions on how often to repeat

Reiter Session 4: Loops 9 / 19



Loops

While-Loop

▶ Repeat as long as some expression is true
▶ Similar to if , but with a repeat option

▶ EXPRESSION must be of type boolean
▶ If EXPRESSION evaluates to false , not executed at all

▶ EXPRESSION is evaluated in every iteration before the code block is run
▶ I.e., if variables change during execution, the expression can check their state

1 while (EXPRESSION) {
2 // some code
3 }

Reiter Session 4: Loops 10 / 19

Nils Reiter



demo



Loops

Do-While-Loop

▶ Repeat as long as some expression is true
▶ Similar to while , but code is executed at least once
1 do {
2 // some code
3 } while (EXPRESSION);

Reiter Session 4: Loops 12 / 19



Loops

For-Loop

▶ In many cases, we know in advance how often do repeat code

1 // do something for each of 25 days
2 int days = 25;
3 int c = 0;
4 while (c < days) {
5 // do stuff
6 c++; // short form of c = c + 1
7 }

1 // do something for each of 25 days
2 int days = 25;
3 for (int c = 0; c < days; c++) {
4 // do stuff
5 }

▶ For-loops offer a denser notation

Reiter Session 4: Loops 13 / 19

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Loops

For-Loop

▶ In many cases, we know in advance how often do repeat code

1 // do something for each of 25 days
2 int days = 25;
3 int c = 0;
4 while (c < days) {
5 // do stuff
6 c++; // short form of c = c + 1
7 }

1 // do something for each of 25 days
2 int days = 25;
3 for (int c = 0; c < days; c++) {
4 // do stuff
5 }

▶ For-loops offer a denser notation

Reiter Session 4: Loops 13 / 19

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Loops

For-Loop

1 for (INIT; CONDITION; UPDATE) {
2 //
3 }

▶ INIT: Executed before entering the loop for the first time
▶ CONDITION: An expression, checked before every iteration

▶ Must be of type boolean

▶ UPDATE: Executed at the end of each iteration

Reiter Session 4: Loops 14 / 19



Loops

For-Loop
Scope

▶ Variables declared within a for loop are not known outside of it
▶ If variables are declared in INIT, they belong to the scope of for-statement
▶ This shows a difference to the corresponding while-statement

Example
1 int a = 4;
2 for (int b = 0; b < 10; b++) {
3 // b is known
4 // a is known
5 }
6 // a is known
7 // b is not known

Reiter Session 4: Loops 15 / 19

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo



Loops

Break and Continue

▶ All loops can also be controlled by two keywords: break and continue

▶ break
▶ Terminates the entire loop abruptly
▶ Execution continues after the closing }

▶ continue
▶ Terminates the current iteration of the loop
▶ Execution continues with the next iteration

▶ for : Run UPDATE first
▶ All loops check their conditions before

▶ break / continue are sometimes useful, but
▶ are able to exit a loop independently of the exit condition and thus
▶ make code harder to read and understand

Reiter Session 4: Loops 17 / 19



Loops

Break and Continue

▶ All loops can also be controlled by two keywords: break and continue

▶ break
▶ Terminates the entire loop abruptly
▶ Execution continues after the closing }

▶ continue
▶ Terminates the current iteration of the loop
▶ Execution continues with the next iteration

▶ for : Run UPDATE first
▶ All loops check their conditions before

▶ break / continue are sometimes useful, but
▶ are able to exit a loop independently of the exit condition and thus
▶ make code harder to read and understand

Reiter Session 4: Loops 17 / 19



Loops

Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 4: Loops 18 / 19



Loops

Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 4: Loops 18 / 19



Loops

Understanding Loops
▶ Sometimes challenging to understand a loop
▶ Crucial: Keep track of variable contents
▶ Variables may change in every iteration
▶ Conditions/exit conditions can be complex

How many ! will be printed?
1 int a = 7;
2 while(a > 0) {
3 int f = a % 2;
4 if (f > 0) {
5 a = a - 2;
6 } else {
7 a = a + 1;
8 }
9 System.out.print("!");

10 }

Line a f
1

Reiter Session 4: Loops 18 / 19

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Section 4

Exercise


	Exercise 4
	Recap: Switch-Statement
	Loops
	Exercise

