
Session 6: Arrays and Strings
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

November 16, 2022



Section 1

Exercise 5



Exercise 5

Today

▶ New things
▶ Arrays to store collections/sequences of things
▶ Strings to store sequences of characters

▶ New concepts
▶ Arrays and strings are reference types
▶ First signs of object orientation

Reiter Session 6: Arrays and Strings 3 / 27



Section 2

Arrays



Arrays

Introduction

▶ So far: Single variables store single values
▶ int i = 5; //one int value in one int variable

Array
▶ Stores a collection of values
▶ Number of values is fixed
▶ All values are of the same type
▶ Syntax: square brackets []

▶ int[] arr = new int[5]; //five int values

Reiter Session 6: Arrays and Strings 5 / 27



Arrays

Introduction

▶ So far: Single variables store single values
▶ int i = 5; //one int value in one int variable

Array
▶ Stores a collection of values
▶ Number of values is fixed
▶ All values are of the same type

▶ Syntax: square brackets []

▶ int[] arr = new int[5]; //five int values

Reiter Session 6: Arrays and Strings 5 / 27



Arrays

Introduction

▶ So far: Single variables store single values
▶ int i = 5; //one int value in one int variable

Array
▶ Stores a collection of values
▶ Number of values is fixed
▶ All values are of the same type
▶ Syntax: square brackets []

▶ int[] arr = new int[5]; //five int values

Reiter Session 6: Arrays and Strings 5 / 27



Arrays

Using Arrays

▶ Array components are enumerated (0-base)
arr[0] //the first component of arr

arr[2] //the last component of arr, if arr has 3 components

▶ Components can be used in expressions, similar to variable names
arr[0] = 5;

int b = arr[2] + 4;

Reiter Session 6: Arrays and Strings 6 / 27



Arrays

Using Arrays

▶ Array components are enumerated (0-base)
arr[0] //the first component of arr

arr[2] //the last component of arr, if arr has 3 components

▶ Components can be used in expressions, similar to variable names
arr[0] = 5;

int b = arr[2] + 4;

Reiter Session 6: Arrays and Strings 6 / 27

Nils Reiter

Nils Reiter



Arrays

Array Length

▶ The number of components of an array is fixed at run-time
1 int a = 5;
2 a = a + (int) Math.random();
3 int[] arr = new int[a];

▶ There is no way to increase the length
▶ …except to create a new array and copy items from the old to the new

▶ Because the length is important, there is a way to access it: arr.length

Reiter Session 6: Arrays and Strings 7 / 27

Nils Reiter

Nils Reiter



Arrays

Array Length

▶ The number of components of an array is fixed at run-time
1 int a = 5;
2 a = a + (int) Math.random();
3 int[] arr = new int[a];

▶ There is no way to increase the length
▶ …except to create a new array and copy items from the old to the new

▶ Because the length is important, there is a way to access it: arr.length

Reiter Session 6: Arrays and Strings 7 / 27



Arrays

Array Length

▶ The number of components of an array is fixed at run-time
1 int a = 5;
2 a = a + (int) Math.random();
3 int[] arr = new int[a];

▶ There is no way to increase the length
▶ …except to create a new array and copy items from the old to the new

▶ Because the length is important, there is a way to access it: arr.length

Reiter Session 6: Arrays and Strings 7 / 27

Nils Reiter



demo



Arrays

Array as a Type

▶ Array is not a type
▶ int -Array is a type

▶ Type identified: int[]

▶ Length is not part of the type
▶ I.e., not known at compile time

1 public static void main(String[] args) {
2 // ...
3 }

▶ As main is a function, args is an argument of type String[]

 A collection of character sequences

Reiter Session 6: Arrays and Strings 9 / 27

Nils Reiter



Arrays

Array as a Type

▶ Array is not a type
▶ int -Array is a type

▶ Type identified: int[]

▶ Length is not part of the type
▶ I.e., not known at compile time

1 public static void main(String[] args) {
2 // ...
3 }

▶ As main is a function, args is an argument of type String[]

 A collection of character sequences

Reiter Session 6: Arrays and Strings 9 / 27



Arrays

Array as a Type

▶ Array is not a type
▶ int -Array is a type

▶ Type identified: int[]

▶ Length is not part of the type
▶ I.e., not known at compile time

1 public static void main(String[] args) {
2 // ...
3 }

▶ As main is a function, args is an argument of type String[]

 A collection of character sequences

Reiter Session 6: Arrays and Strings 9 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Arrays

Array Creation

▶ With new
▶ int[] a = new int[5];
▶ Filled with 0

▶ As literal
▶ int[] a = new int[] {1, 2, 3};

▶ In this case, the type can be inferred, so we can skip new int[3] : int[] a = {1, 2, 3};

▶ someFunction(new int[] {1,2,3}) – literal array as argument

Reiter Session 6: Arrays and Strings 10 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo



Arrays

Data Types

Primitive Data Types and Objects

▶ Two kinds of types
▶ Primitive data types: Built into the language

▶ Type names are reserved keywords in Java
▶ Convention: Lower cased

▶ Non-primitive data types (“reference types”): Established in the library
▶ Type names are defined by library authors
▶ Convention: Upper cased
▶ Reference types can also be defined by us

(in the form of classes, to be discussed later)

Reiter Session 3: Commenting, data types, casting 12 / 29

Session 3
October 26

Reiter Session 6: Arrays and Strings 12 / 27

Nils Reiter

Nils Reiter



Arrays

Array is a Reference Type

1 // Primitive type
2 int x = 5;
3 int y = x;
4 y = y + 2; // y now contains 7,
5 // x still 5
6
7 // Reference type
8 int[] a = {1,2,3};
9 int[] b = a;

10 a[0] = 0; // a and b are identical

▶ Primitive types: Values (of memory
regions) are passed

▶ Reference types: References (to memory
regions) are passed
▶ If you change a reference type within a

function, it’s changed outside of the
function

▶ Everything from now on is a reference type

Reiter Session 6: Arrays and Strings 13 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Arrays

Comparing Reference Types

1 int[] a = {1,2,3};
2 int[] b = {1,2,3};
3
4 if (a == b) {
5 System.out.println("Arrays are equal");
6 } else {
7 System.out.println("Arrays are not equal");
8 }

▶ Which output do we get?

▶ If reference types are compared with == & co., we compare the memory location
▶ Not the content

▶ To compare the content: Arrays.equals(a1, a2) javadoc

 Using some functions requires importing them first
▶ Eclipse suggestions are mostly correct, more on this next week

Reiter Session 6: Arrays and Strings 14 / 27

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html
Nils Reiter



Arrays

Comparing Reference Types

1 int[] a = {1,2,3};
2 int[] b = {1,2,3};
3
4 if (a == b) {
5 System.out.println("Arrays are equal");
6 } else {
7 System.out.println("Arrays are not equal");
8 }

▶ Which output do we get?
▶ If reference types are compared with == & co., we compare the memory location

▶ Not the content
▶ To compare the content: Arrays.equals(a1, a2) javadoc

 Using some functions requires importing them first
▶ Eclipse suggestions are mostly correct, more on this next week

Reiter Session 6: Arrays and Strings 14 / 27

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html


Arrays

Comparing Reference Types

1 int[] a = {1,2,3};
2 int[] b = {1,2,3};
3
4 if (a == b) {
5 System.out.println("Arrays are equal");
6 } else {
7 System.out.println("Arrays are not equal");
8 }

▶ Which output do we get?
▶ If reference types are compared with == & co., we compare the memory location

▶ Not the content
▶ To compare the content: Arrays.equals(a1, a2) javadoc

 Using some functions requires importing them first
▶ Eclipse suggestions are mostly correct, more on this next week

Reiter Session 6: Arrays and Strings 14 / 27

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html


demo



Arrays

Array Copying

1 // Reference type
2 int[] a = {1,2,3};
3 int[] b = a; // does not create a copy of a
4 b[0] = 0;
5
6 int[] c = a.clone(); // creates a copy
7 c[2] = 10; // no change in a

▶ Copying an array: someArray.clone()

▶ This is a method (note the parentheses)

Reiter Session 6: Arrays and Strings 16 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Arrays

Methods and Fields

▶ length is stored with an array
▶ Calling someArray.length does not execute code, it’s just a variable access

▶ clone() is a function associated with this array
▶ Calling someArray.clone() runs this function in the context of this array
▶ Method: A function with benefits

▶ Other methods are displayed by Eclipse

Reiter Session 6: Arrays and Strings 17 / 27

Nils Reiter

Nils Reiter



Arrays

Methods and Fields

▶ length is stored with an array
▶ Calling someArray.length does not execute code, it’s just a variable access

▶ clone() is a function associated with this array
▶ Calling someArray.clone() runs this function in the context of this array
▶ Method: A function with benefits

▶ Other methods are displayed by Eclipse

Reiter Session 6: Arrays and Strings 17 / 27

Nils Reiter



Arrays

Array Patterns

Frequently used pattern:
1 for (int i = 0; i < array.length; i++) {
2 // access each array element with array[i]
3 }

Two-dimensional array:
1 int[][] matrix = new int[17][25];
2 int[0][0] = 15;
3 for (int i = 0; i < matrix.length; i++) {
4 for (int j = 0; j < matrix[i].length; j++) {
5 // cells can be accessed with matrix[i][j]
6 }
7 }

Reiter Session 6: Arrays and Strings 18 / 27



Arrays

Array Patterns

Frequently used pattern:
1 for (int i = 0; i < array.length; i++) {
2 // access each array element with array[i]
3 }

Two-dimensional array:
1 int[][] matrix = new int[17][25];
2 int[0][0] = 15;
3 for (int i = 0; i < matrix.length; i++) {
4 for (int j = 0; j < matrix[i].length; j++) {
5 // cells can be accessed with matrix[i][j]
6 }
7 }

Reiter Session 6: Arrays and Strings 18 / 27

Nils Reiter

Nils Reiter



Section 3

Strings



Strings

Introduction

▶ Represents character sequences
▶ A reference type
▶ Internally: An array of char -values (mostly)
1 String s = "Hi there!"; // String literal with double quotes

Reiter Session 6: Arrays and Strings 20 / 27

Nils Reiter

Nils Reiter



Strings

String Operations

Several regular operators have been re-defined for strings
▶ Concatenation

1 String s1 = "Hi";
2 String s2 = "there";
3 String s = s1 + s2; // s now contains "Hithere"

▶ + is the only regular operator you can use with strings

▶ Length: s.length() //returns 7 (as an int)

▶ Convert case
▶ s2.toLowerCase(); //returns "hi"
▶ s2.toUpperCase(); //returns "HI"

Reiter Session 6: Arrays and Strings 21 / 27

Nils Reiter

Nils Reiter



Strings

String Operations

Several regular operators have been re-defined for strings
▶ Concatenation

1 String s1 = "Hi";
2 String s2 = "there";
3 String s = s1 + s2; // s now contains "Hithere"

▶ + is the only regular operator you can use with strings
▶ Length: s.length() //returns 7 (as an int)

▶ Convert case
▶ s2.toLowerCase(); //returns "hi"
▶ s2.toUpperCase(); //returns "HI"

Reiter Session 6: Arrays and Strings 21 / 27



Strings

String Operations

Several regular operators have been re-defined for strings
▶ Concatenation

1 String s1 = "Hi";
2 String s2 = "there";
3 String s = s1 + s2; // s now contains "Hithere"

▶ + is the only regular operator you can use with strings
▶ Length: s.length() //returns 7 (as an int)

▶ Convert case
▶ s2.toLowerCase(); //returns "hi"
▶ s2.toUpperCase(); //returns "HI"

Reiter Session 6: Arrays and Strings 21 / 27

Nils Reiter



Strings

Strings and Other Types

▶ All primitive types can be converted into a string
▶ System.out.println() does this, as we have seen

▶ Conversion done implicitly:
1 int i = 2022;
2 String s = "Hallo";
3 System.out.println(s + i); // implicit conversion of i,
4 // then concatenation

▶ Explicit conversion
▶ Many functions String.valueOf(ARG)
▶ Take all primitive types as arguments

Reiter Session 6: Arrays and Strings 22 / 27

Nils Reiter



Strings

Strings and Other Types

▶ All primitive types can be converted into a string
▶ System.out.println() does this, as we have seen

▶ Conversion done implicitly:
1 int i = 2022;
2 String s = "Hallo";
3 System.out.println(s + i); // implicit conversion of i,
4 // then concatenation

▶ Explicit conversion
▶ Many functions String.valueOf(ARG)
▶ Take all primitive types as arguments

Reiter Session 6: Arrays and Strings 22 / 27

Nils Reiter



Strings

The class String

▶ java.lang.String : Our first class
▶ Classes and Objects:

Object-oriented programming

java.lang.String

"Hi" "there" Objects

Classes

“ Hi is an instance of class String ”
More on classes and objects: Next week(s)

Reiter Session 6: Arrays and Strings 23 / 27

Nils Reiter

Nils Reiter



Strings

main Function

1 public class MyProgram
2 public static void main(String[] args) {
3 // do stuff
4 }
5 }

▶ Entry point for every Java program
▶ A regular function, with arguments

How to set the arguments?

▶ Command line: java MyProgram ARG1 ARG2 ...

▶ ARG1 and ARG2 are available as arguments in main

▶ Eclipse: Run → Run Configurations

Reiter Session 6: Arrays and Strings 24 / 27



Strings

main Function

1 public class MyProgram
2 public static void main(String[] args) {
3 // do stuff
4 }
5 }

▶ Entry point for every Java program
▶ A regular function, with arguments

How to set the arguments?
▶ Command line: java MyProgram ARG1 ARG2 ...

▶ ARG1 and ARG2 are available as arguments in main

▶ Eclipse: Run → Run Configurations

Reiter Session 6: Arrays and Strings 24 / 27



Strings

main Function

1 public class MyProgram
2 public static void main(String[] args) {
3 // do stuff
4 }
5 }

▶ Entry point for every Java program
▶ A regular function, with arguments

How to set the arguments?
▶ Command line: java MyProgram ARG1 ARG2 ...

▶ ARG1 and ARG2 are available as arguments in main

▶ Eclipse: Run → Run Configurations

Reiter Session 6: Arrays and Strings 24 / 27



demo



Strings

What can we do with Strings?

…and how do we find out?
▶ Javadoc java.lang.String

▶ char charAt(int index);
▶ int compareTo(String anotherString)
▶ String concat(String str)
▶ boolean endsWith(String suffix)
▶ boolean isEmpty()
▶ String substring(int beginIndex, int endIndex)
▶ …

▶ How to use them? INSTANCE.METHOD(ARGUMENTS)
▶ Eclipse suggests possible methods/fields in a small window
▶ Methods are associated with the specific instance before the .

Reiter Session 6: Arrays and Strings 26 / 27

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Strings

What can we do with Strings?

…and how do we find out?
▶ Javadoc java.lang.String

▶ char charAt(int index);
▶ int compareTo(String anotherString)
▶ String concat(String str)
▶ boolean endsWith(String suffix)
▶ boolean isEmpty()
▶ String substring(int beginIndex, int endIndex)
▶ …

▶ How to use them? INSTANCE.METHOD(ARGUMENTS)
▶ Eclipse suggests possible methods/fields in a small window
▶ Methods are associated with the specific instance before the .

Reiter Session 6: Arrays and Strings 26 / 27

https://docs.oracle.com/javase/7/docs/api/java/lang/String.html


Section 4

Exercise


	Exercise 5
	Arrays
	Strings
	Exercise

