
Session 7: Classes and Objects
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

November 23, 2022

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Section 1

Exercise 6

Section 2

Object-Oriented Programming

Object-Oriented Programming

Introduction

▶ Paradigm on how to write and structure code
▶ Method for dealing with complexity
▶ Very popular across many programming languages
▶ Classes and objects to structure our domain of interest

Reiter Session 7: Classes and Objects 4 / 15

Object-Oriented Programming

Classes and Instances

Classes
▶ A unit of data and behaviour
▶ Represents all things of the same type in our domain
▶ Data: Stored in fields
▶ Behaviour: Defined in methods

Instances (= objects)
▶ An instance of a class C is one individual of the type
▶ All instances of C have the same fields, but (potentially) with different values
▶ Their class determines what they can do

Reiter Session 7: Classes and Objects 5 / 15

Object-Oriented Programming

Classes and Instances
Example

▶ Horses
▶ Can run fast
▶ Give birth to live young (= are mammals)
▶ Can be grey, brown, white, …
▶ Life span: 25–30 years

▶ Cranes
▶ Can fly
▶ Lay eggs
▶ Are grey with a black-ish neck
▶ Life span: 20–30 years

Reiter Session 7: Classes and Objects 6 / 15

Object-Oriented Programming

Classes in Java

1 public class Horse {
2 // the fields/variables of a class to store data about an instance
3 String color;
4 String name;
5 int currentSpeed;
6
7 // methods of the class to define their behaviour
8 public Horse mate(Horse partner) {
9 // two horses meet and make a new horse

10 }
11
12 public static void main(String[] args) {
13 // create an instance of type horse
14 Horse h1 = new Horse();
15 // create a second instance of type horse
16 Horse h2 = new Horse();
17 }
18 }

Reiter Session 7: Classes and Objects 7 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

demo

Object-Oriented Programming

Classes in Java

▶ Class definitions are introduced with class
▶ A class name is used instead of a type
▶ I.e., we can define our own types

▶ Classes can have fields to store values and methods to do something
▶ Methods work like functions, except that they are not static anymore
▶ But they have a regular return value

▶ Each (public) class is in their own file

Reiter Session 7: Classes and Objects 9 / 15

Object-Oriented Programming

Object Initialisation

1 public class Horse {
2 // newly created horses have zero age
3 int age = 0;
4
5 // Constructor: Special function called when an object is created
6 // Doesn't have a return type, otherwise a normal function
7 // with the same name as the class
8 public Horse() {
9 System.out.println("A horse is born.");

10 }
11
12 public static void main(String[] args) {
13 Horse h1 = new Horse(); // "A horse is born" gets printed
14 }
15 }

Reiter Session 7: Classes and Objects 10 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Object-Oriented Programming

Object Initialisation
Constructor

▶ A regular function, but
▶ Without return type
▶ With the same name as the class

▶ Can take arguments:
1 public class Horse {
2 String theName;
3
4 public Horse(String name) {
5 theName = name;
6 }
7
8 public static void main(String[] args) {
9 Horse h1 = new Horse("Joe");

10 }
11 }

Reiter Session 7: Classes and Objects 11 / 15

Object-Oriented Programming

Object Initialisation
Constructor

▶ A regular function, but
▶ Without return type
▶ With the same name as the class

▶ Can take arguments:
1 public class Horse {
2 String theName;
3
4 public Horse(String name) {
5 theName = name;
6 }
7
8 public static void main(String[] args) {
9 Horse h1 = new Horse("Joe");

10 }
11 }

Reiter Session 7: Classes and Objects 11 / 15

Object-Oriented Programming

The Keyword this

▶ this is a special variable
▶ Within a method, this refers to the object used to call the method
1 public class Horse {
2 String name;
3
4 public Horse(String name) { this.name = name; }
5
6 public void printName() { System.out.println(this.name); }
7
8 public static void main(String[] args) {
9 Horse h1 = new Horse("Joe");

10 Horse h2 = new Horse("Mary");
11 h1.printName(); // prints Joe
12 h2.printName(); // prints Mary
13 }
14 }

Reiter Session 7: Classes and Objects 12 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Object-Oriented Programming

Reference Types and null

▶ All classes are reference types
▶ When dealing with a variable, we’re dealing with a reference to the object
▶ If two objects are created with new , they are not equal (==), even if they have the same

field values

▶ In some situations, we need to signify that a reference is empty
▶ I.e., it’s a variable of a certain reference type, but an object is not yet created
▶ E.g., if two horses mate, but don’t produce an offspring

▶ A new keyword: null
▶ null is a value for any reference type
▶ E.g., Horse h = null; established such an empty reference

Reiter Session 7: Classes and Objects 13 / 15

Object-Oriented Programming

Reference Types and null

▶ All classes are reference types
▶ When dealing with a variable, we’re dealing with a reference to the object
▶ If two objects are created with new , they are not equal (==), even if they have the same

field values
▶ In some situations, we need to signify that a reference is empty

▶ I.e., it’s a variable of a certain reference type, but an object is not yet created
▶ E.g., if two horses mate, but don’t produce an offspring

▶ A new keyword: null
▶ null is a value for any reference type
▶ E.g., Horse h = null; established such an empty reference

Reiter Session 7: Classes and Objects 13 / 15

Object-Oriented Programming

Reference Types and null

▶ All classes are reference types
▶ When dealing with a variable, we’re dealing with a reference to the object
▶ If two objects are created with new , they are not equal (==), even if they have the same

field values
▶ In some situations, we need to signify that a reference is empty

▶ I.e., it’s a variable of a certain reference type, but an object is not yet created
▶ E.g., if two horses mate, but don’t produce an offspring

▶ A new keyword: null
▶ null is a value for any reference type
▶ E.g., Horse h = null; established such an empty reference

Reiter Session 7: Classes and Objects 13 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Object-Oriented Programming

Packages

▶ Multiple classes often belong conceptually together
▶ Packages can be used to group classes (and files)
▶ Package declaration: package de.nilsreiter.java.bla;

▶ First statement within a file
▶ Package hierarchy must reflect directory hierarchy

▶ Eclipse hides that from us
▶ Package name conventions

▶ Lower-cased
▶ Reversed URLs to be globally unique

Reiter Session 7: Classes and Objects 14 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Section 3

Exercise

	Exercise 6
	Object-Oriented Programming
	Exercise

