
Session 8: Static, Private, Public, Protected
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

November 30, 2022

Nils Reiter



Section 1

Exercise 7



Exercise 7

Recap

▶ Object-Oriented Programming
▶ Dealing with complexity by structuring your code
▶ Classes and objects

▶ Classes
▶ Unit of code to define some type of object
▶ Contains fields (= variables, data) and methods (= behaviour)

▶ Objects
▶ Concrete individuals of a certain class

Reiter Session 8: Static, Private, Public, Protected 3 / 11



Exercise 7

Recap
Example

1 public class Horse {
2 // the fields/variables of a class to store data about an instance
3 String color;
4 String name;
5 int currentSpeed;
6
7 // methods of the class to define their behaviour
8 public Horse mate(Horse partner) {
9 // two horses meet and make a new horse

10 }
11
12 public static void main(String[] args) {
13 // create an instance of type horse
14 Horse h1 = new Horse();
15 // create a second instance of type horse
16 Horse h2 = new Horse();
17 }
18 }

Reiter Session 8: Static, Private, Public, Protected 4 / 11

Nils Reiter

Nils Reiter

Nils Reiter



Section 2

Methods



Methods

Introduction

Methods and Fields

Staticness Accessibility

Static Non-Static Private Protected Public
static private protected public

Reiter Session 8: Static, Private, Public, Protected 6 / 11

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Methods

Staticness

Non-static
▶ Methods can only be used with an object of the class in which they are defined

▶ E.g., in order to call method mate(Horse) , one needs an object of type Horse
▶ Default behaviour (unmarked methods are non-static)
▶ Also applies to fields

Static
▶ Methods can be used without an object

▶ E.g., marking a species as endangered is something for the class, not for instances of it
▶ Java keyword static

Reiter Session 8: Static, Private, Public, Protected 7 / 11

Nils Reiter

Nils Reiter

Nils Reiter



1 public class Horse {
2 // the fields/variables of a class to store data about an instance
3 String name;
4
5 // boolean field to store wether the species is extinct in the wild
6 static boolean extinctInTheWild;
7
8 public Horse mate(Horse partner) {
9 // two horses meet and make a new horse

10 }
11
12 public static boolean isExtinctInTheWild() {
13 return extinctInTheWild;
14 }
15
16 public static void main(String[] args) {
17 Horse h1 = new Horse();
18 Horse h2 = new Horse();
19 Horse h3 = h1.mate(h2);
20
21 if (Horse.isExtinctInTheWild()) {
22 // do something
23 }
24 }
25 }

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Methods

Accessibility
▶ Public access – public

▶ Method/field can be accessed from anywhere
▶ Protected access – protected

▶ Method/field can only be accessed from within the same package
▶ If no access is specified, it’s protected

▶ Private access – private

▶ Method/field can only be accessed from within the same class

Why?
▶ Modularization is important for dealing with complexity
▶ A complex program consists of many small parts that are not as complex
▶ Small parts are only maintainable if they have restricted interfaces
▶ Access restrictions can enfore that

Reiter Session 8: Static, Private, Public, Protected 9 / 11

Nils Reiter



Methods

Accessibility
▶ Public access – public

▶ Method/field can be accessed from anywhere
▶ Protected access – protected

▶ Method/field can only be accessed from within the same package
▶ If no access is specified, it’s protected

▶ Private access – private

▶ Method/field can only be accessed from within the same class

Why?
▶ Modularization is important for dealing with complexity
▶ A complex program consists of many small parts that are not as complex
▶ Small parts are only maintainable if they have restricted interfaces
▶ Access restrictions can enfore that

Reiter Session 8: Static, Private, Public, Protected 9 / 11



demo



Section 3

Exercise


	Exercise 7
	Methods
	Exercise

