
Recap

Methods and Fields

Staticness Accessibility

Static Non-Static Private Protected Public
static private protected public

Reiter Session 9: Inheritance 1 / 15

Nils Reiter

Nils Reiter



Session 9: Inheritance
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

December 7, 2022



Section 1

Exercise 8



Section 2

Inheritance



Inheritance

Introduction

Inheritance – “Vererbung”
▶ Important concept in object-oriented programming
▶ Classes represent kinds of things, because they show similar behaviour

▶ Not all kinds are totally unique
▶ Many kinds share certain properties

▶ E.g. Donkeys move in a similar way as horses do and both are mammals etc.

▶ Inheritance allows us to model this
▶ Many domains have hierarchical structures

▶ E.g., animal species, companies, kitchen equipment

Reiter Session 9: Inheritance 5 / 15



Inheritance

Introduction

Inheritance – “Vererbung”
▶ Important concept in object-oriented programming
▶ Classes represent kinds of things, because they show similar behaviour

▶ Not all kinds are totally unique
▶ Many kinds share certain properties

▶ E.g. Donkeys move in a similar way as horses do and both are mammals etc.
▶ Inheritance allows us to model this
▶ Many domains have hierarchical structures

▶ E.g., animal species, companies, kitchen equipment

Reiter Session 9: Inheritance 5 / 15



Inheritance

Class Inheritance

▶ A class inherits from another class
▶ New keyword: extends , used in the class declaration:

public class Horse extends Animal { ... }

▶ Horse: sub class
▶ Animal: super class

Reiter Session 9: Inheritance 6 / 15

Nils Reiter

Nils Reiter

Nils Reiter



Inheritance

Class Inheritance
Meaning

▶ No change in accessibility/visibility rules
▶ private fields/methods still not visible, protected only within the same package etc.

▶ Objects of sub class can execute methods defined in super class
▶ E.g., the class Animal can define a walk-method for all sub classes

▶ Objects of the sub class can be assigned to variables of the super class
▶ Animal someAnimal = new Horse();
▶ Animal[] zooAnimals = new Animal[2] { new Horse(), new Donkey() };

▶ Casting from sub class to super class (“upwards”) always works
▶ Animal someAnimal = (Animal) myHorse;

Reiter Session 9: Inheritance 7 / 15



Inheritance

Class Inheritance
Meaning

▶ No change in accessibility/visibility rules
▶ private fields/methods still not visible, protected only within the same package etc.

▶ Objects of sub class can execute methods defined in super class
▶ E.g., the class Animal can define a walk-method for all sub classes

▶ Objects of the sub class can be assigned to variables of the super class
▶ Animal someAnimal = new Horse();
▶ Animal[] zooAnimals = new Animal[2] { new Horse(), new Donkey() };

▶ Casting from sub class to super class (“upwards”) always works
▶ Animal someAnimal = (Animal) myHorse;

Reiter Session 9: Inheritance 7 / 15

Nils Reiter

Nils Reiter

Nils Reiter



demo



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 }
7
8 class Main {
9 public static void main(String[] args) {

10 Horse h = new Horse();
11 h.step(5);
12 }
13 }

▶ Objects of the sub class can call
methods defined in super class

Reiter Session 9: Inheritance 9 / 15



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 }
7
8 class Main {
9 public static void main(String[] args) {

10 Horse h = new Horse();
11 h.step(5);
12 }
13 }

▶ Objects of the sub class can call
methods defined in super class

Reiter Session 9: Inheritance 9 / 15

Nils Reiter

Nils Reiter



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 public void step(int size) { /*...*/ };
7 }
8
9 class Main {

10 public static void main(String[] args) {
11 Horse h = new Horse();
12 h.step(5);
13 }
14 }

▶ Methods in sub class override
methods in super class

▶ Calling super method explicitly
▶ Outside of sub class by casting:

((Animal)h).step(5);
▶ Inside of sub class with super :

super.step(5);
▶ Think of super as

((Animal) this) (in this case)

Reiter Session 9: Inheritance 10 / 15

Nils Reiter

Nils Reiter

Nils Reiter



Inheritance

Inheritance
Method Overriding

1 class Animal {
2 public void step(int size) { /*...*/ };
3 }
4
5 class Horse extends Animal {
6 public void step(int size) { /*...*/ };
7 }
8
9 class Main {

10 public static void main(String[] args) {
11 Horse h = new Horse();
12 h.step(5);
13 }
14 }

▶ Methods in sub class override
methods in super class

▶ Calling super method explicitly
▶ Outside of sub class by casting:

((Animal)h).step(5);
▶ Inside of sub class with super :

super.step(5);
▶ Think of super as

((Animal) this) (in this case)

Reiter Session 9: Inheritance 10 / 15

Nils Reiter



Inheritance

Variable Type != Object Type
▶ Each variable has a type

▶ E.g., int , String , Horse , …
▶ Each object and value has a type

▶ E.g., int , String , Horse , …

▶ If object/value type and variable type match, we can make an assignment
▶ E.g., int i = 5;
▶ E.g., Horse h = new Horse();

▶ It’s a compile error, if they do not match
▶ E.g., int i = true; 
▶ E.g., Horse h = new Donkey(); 

▶ But we can assign a object of a sub class to a variable of a super class
▶ E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Inheritance 11 / 15

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Inheritance

Variable Type != Object Type
▶ Each variable has a type

▶ E.g., int , String , Horse , …
▶ Each object and value has a type

▶ E.g., int , String , Horse , …
▶ If object/value type and variable type match, we can make an assignment

▶ E.g., int i = 5;
▶ E.g., Horse h = new Horse();

▶ It’s a compile error, if they do not match
▶ E.g., int i = true; 
▶ E.g., Horse h = new Donkey(); 

▶ But we can assign a object of a sub class to a variable of a super class
▶ E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Inheritance 11 / 15



Inheritance

Variable Type != Object Type
▶ Each variable has a type

▶ E.g., int , String , Horse , …
▶ Each object and value has a type

▶ E.g., int , String , Horse , …
▶ If object/value type and variable type match, we can make an assignment

▶ E.g., int i = 5;
▶ E.g., Horse h = new Horse();

▶ It’s a compile error, if they do not match
▶ E.g., int i = true; 
▶ E.g., Horse h = new Donkey(); 

▶ But we can assign a object of a sub class to a variable of a super class
▶ E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Inheritance 11 / 15

Nils Reiter



Inheritance

Variable Type != Object Type
▶ Each variable has a type

▶ E.g., int , String , Horse , …
▶ Each object and value has a type

▶ E.g., int , String , Horse , …
▶ If object/value type and variable type match, we can make an assignment

▶ E.g., int i = 5;
▶ E.g., Horse h = new Horse();

▶ It’s a compile error, if they do not match
▶ E.g., int i = true; 
▶ E.g., Horse h = new Donkey(); 

▶ But we can assign a object of a sub class to a variable of a super class
▶ E.g., Animal a = new Horse(); //if Horse extends Animal

Reiter Session 9: Inheritance 11 / 15

Nils Reiter



Inheritance

java.lang.Object

▶ All classes inherit automatically from java.lang.Object

▶ I.e., every object is in an instance of java.lang.Object (though maybe indirectly)
▶ Class provides a few methods Javadoc

▶ Object clone()
▶ boolean equals(Object obj)
▶ int hashCode()
▶ String toString()
▶ void wait() , void wait(long timeout) , void wait(long timeout, int nanos)
▶ void notify() , void notifyAll()
▶ void finalize()
▶ Class<?> getClass()

Reiter Session 9: Inheritance 12 / 15

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Inheritance

Testing Inheritance

▶ New operator: isinstance

1 Horse h = new Horse();
2
3 h instanceof Horse; // true
4 h instanceof Object; // true
5 h instanceof String; // false
6 h instanceof Animal; // true if Horse extends Animal

Reiter Session 9: Inheritance 13 / 15



Inheritance

Remarks on Inheritance

▶ Why inheritance?
▶ Model commonalities in our domain
▶ The same behaviour can be implement as high as possible in the hierarchy, and only once
▶ Again, reducing complexity

▶ Multiple inheritance: Can a class inherit from multiple classes?
▶ In Java: No

▶ Because method calls then become ambiguous
▶ In C++/Python: Yes!

▶ C++: Programmer has to resolve ambiguity with additional syntax
▶ Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Inheritance 14 / 15



Inheritance

Remarks on Inheritance

▶ Why inheritance?
▶ Model commonalities in our domain
▶ The same behaviour can be implement as high as possible in the hierarchy, and only once
▶ Again, reducing complexity

▶ Multiple inheritance: Can a class inherit from multiple classes?
▶ In Java: No

▶ Because method calls then become ambiguous

▶ In C++/Python: Yes!
▶ C++: Programmer has to resolve ambiguity with additional syntax
▶ Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Inheritance 14 / 15



Inheritance

Remarks on Inheritance

▶ Why inheritance?
▶ Model commonalities in our domain
▶ The same behaviour can be implement as high as possible in the hierarchy, and only once
▶ Again, reducing complexity

▶ Multiple inheritance: Can a class inherit from multiple classes?
▶ In Java: No

▶ Because method calls then become ambiguous
▶ In C++/Python: Yes!

▶ C++: Programmer has to resolve ambiguity with additional syntax
▶ Python: Depends on the order in which inheritance has been specified

Reiter Session 9: Inheritance 14 / 15

Nils Reiter

Nils Reiter

Nils Reiter



Section 3

Exercise


	Exercise 8
	Inheritance
	Exercise

