
Recap: Inheritance

▶ A class can inherit from another class
▶ New keyword: extends , used in the class declaration:

public class Horse extends Animal { ... }
▶ Horse: sub class
▶ Animal: super class

▶ Sub class can be assigned to variables of the super type
1 Animal[] animals = new Animal[3];
2 animals[0] = new Horse();

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 1 / 17



Section 1

Exercise 9



Session 10: Abstract Classes, Abstract Methods and Interfaces
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

December 14, 2022



Good News, Everybody!



Section 2

Abstract Classes



Abstract Classes

Introduction

WalkingMammal

Horse Alpaca

▶ So far: Alpaca and Horse inherit from WalkingMammal
▶ Animal movement implemented in class WalkingMammal

▶ What is the problem with the statement below?
1 WalkingMammal wm = new WalkingMammal();

▶ We often introduce super classes for good reasons
▶ But creating an instance of them doesn’t make sense
▶ By declaring a class as abstract , we can prevent its instantiation

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 6 / 17



Abstract Classes

Introduction

WalkingMammal

Horse Alpaca

▶ So far: Alpaca and Horse inherit from WalkingMammal
▶ Animal movement implemented in class WalkingMammal

▶ What is the problem with the statement below?
1 WalkingMammal wm = new WalkingMammal();

▶ We often introduce super classes for good reasons
▶ But creating an instance of them doesn’t make sense
▶ By declaring a class as abstract , we can prevent its instantiation

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 6 / 17



Abstract Classes

Introduction

WalkingMammal

Horse Alpaca

▶ So far: Alpaca and Horse inherit from WalkingMammal
▶ Animal movement implemented in class WalkingMammal

▶ What is the problem with the statement below?
1 WalkingMammal wm = new WalkingMammal();

▶ We often introduce super classes for good reasons
▶ But creating an instance of them doesn’t make sense
▶ By declaring a class as abstract , we can prevent its instantiation

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 6 / 17



Abstract Classes

Abstract Classes
Example

1 public abstract class WalkingMammal {
2 public void walk() {
3 // ...
4 }
5 }

1 public class Horse extends WalkingAnimal {
2 // ...
3 }

1 public class Main {
2 public static void main(String[] args) {
3 WalkingMammal wm = new WalkingMammal(); // compile error
4 Horse h = new Horse(); // works as before
5 }
6 }

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 7 / 17



Abstract Classes

Abstract Classes

▶ An abstract class is a regular class
▶ With the only exception that one cannot create an instance from it
▶ Only makes sense in the context of inheritance

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 8 / 17



Section 3

Abstract Methods



Abstract Methods

Introduction

▶ All animals are capable of reproduction
▶ But their methods are very different:

▶ Mammals generally give birth to live young
▶ Except the platypus, which lays eggs

▶ Lizards generally lay eggs
▶ Except the common lizard, which may also have live young

▶ The only sensible place for an implementation of that is the specific class of an animal
▶ But we may want to encode that all animals are capable of reproduction somehow
▶ abstract methods allow us to do this

 abstract means something else for classes than for methods

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 10 / 17



Abstract Methods

Introduction

▶ All animals are capable of reproduction
▶ But their methods are very different:

▶ Mammals generally give birth to live young
▶ Except the platypus, which lays eggs

▶ Lizards generally lay eggs
▶ Except the common lizard, which may also have live young

▶ The only sensible place for an implementation of that is the specific class of an animal
▶ But we may want to encode that all animals are capable of reproduction somehow

▶ abstract methods allow us to do this
 abstract means something else for classes than for methods

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 10 / 17



Abstract Methods

Introduction

▶ All animals are capable of reproduction
▶ But their methods are very different:

▶ Mammals generally give birth to live young
▶ Except the platypus, which lays eggs

▶ Lizards generally lay eggs
▶ Except the common lizard, which may also have live young

▶ The only sensible place for an implementation of that is the specific class of an animal
▶ But we may want to encode that all animals are capable of reproduction somehow
▶ abstract methods allow us to do this

 abstract means something else for classes than for methods

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 10 / 17



Abstract Methods

Abstract Methods
Exmaple

1 public abstract class Animal {
2 public abstract Animal reproduce(Animal other);
3 }

1 public class Horse extends Animal {
2 public Animal reproduce(Animal other) {
3 // ...
4 }
5 }

1 public class Main {
2 public static void main(String[] args) {
3 Horse h1 = new Horse();
4 Horse h2 = new Horse();
5 Horse h3 = h1.reproduce(h2);
6 }
7 }

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 11 / 17

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter
Animal h1 = new Horse()



Abstract Methods

Abstract Methods and Classes

▶ If a class has one abstract method, the class must be abstract as well
▶ Because otherwise, there could be an object with a method that doesn’t have an

implementation

▶ A non-abstract class that inherits from an abstract class, must implement all abstract
methods

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 12 / 17



Abstract Methods

Abstract Methods and Classes

▶ If a class has one abstract method, the class must be abstract as well
▶ Because otherwise, there could be an object with a method that doesn’t have an

implementation
▶ A non-abstract class that inherits from an abstract class, must implement all abstract

methods

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 12 / 17



Abstract Methods

Method Signature and Overriding

▶ Method signature: Name, argument types, argument order
▶ Return type not part of the signature

▶ Overriding a method in a subclass
▶ Provide a method with the same signature and “matching return type”

▶ Matching return type
▶ The overriding method (i.e., the one in the sub class) can return a more specific type
▶ Because the more specific type is also of the more generic type

Example
1 Animal a = h1.reproduce(h2); // because the return type of reproduce ,
2 // as defined in Horse is more specific than as defined in Animal

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 13 / 17



Abstract Methods

Method Signature and Overriding

▶ Method signature: Name, argument types, argument order
▶ Return type not part of the signature

▶ Overriding a method in a subclass
▶ Provide a method with the same signature and “matching return type”

▶ Matching return type
▶ The overriding method (i.e., the one in the sub class) can return a more specific type
▶ Because the more specific type is also of the more generic type

Example
1 Animal a = h1.reproduce(h2); // because the return type of reproduce ,
2 // as defined in Horse is more specific than as defined in Animal

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 13 / 17



Abstract Methods

Method Signature and Overriding

▶ Method signature: Name, argument types, argument order
▶ Return type not part of the signature

▶ Overriding a method in a subclass
▶ Provide a method with the same signature and “matching return type”

▶ Matching return type
▶ The overriding method (i.e., the one in the sub class) can return a more specific type
▶ Because the more specific type is also of the more generic type

Example
1 Animal a = h1.reproduce(h2); // because the return type of reproduce ,
2 // as defined in Horse is more specific than as defined in Animal

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 13 / 17



Section 4

Interfaces



Interfaces

Introduction
▶ An interface is similar to a class, in which

▶ All methods are abstract
▶ All methods are public
▶ There are no fields

▶ Interfaces cannot be instantiated
▶ Classes can implement one or more interfaces

▶ In addition to extending a super class
1 public interface SomeInterface {
2 int someMethod();
3 }
4
5 public class SomeClass implements SomeInterface {
6 public int someMethod() {
7 // do stuff
8 return 5;
9 };

10 }

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 15 / 17



Interfaces

Introduction
▶ An interface is similar to a class, in which

▶ All methods are abstract
▶ All methods are public
▶ There are no fields

▶ Interfaces cannot be instantiated
▶ Classes can implement one or more interfaces

▶ In addition to extending a super class
1 public interface SomeInterface {
2 int someMethod();
3 }
4
5 public class SomeClass implements SomeInterface {
6 public int someMethod() {
7 // do stuff
8 return 5;
9 };

10 }

Reiter Session 10: Abstract Classes, Abstract Methods and Interfaces 15 / 17



demo



Section 5

Exercise


	Exercise 9
	Abstract Classes
	Abstract Methods
	Interfaces
	Exercise

