
Session 12: Recap
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

January 11, 2023

Running a Java-Program

Programming

.java
Source code

Compiling

.class
Byte code

Executing on JVM

Windows Linux Mac OS

Reiter Session 12: Recap 2 / 14

Recap: What’s a Java Program?
A sequence of statements

▶ Statements are:
▶ Code blocks: { /*MORE STATE MENTS */}

▶ Assignment statement: Dog d = new Dog(); , or int i = 15;

▶ If statement: if (i < 15) CODE BLOCK else CODE BLOCK

▶ While statement: while (i < 15) CODE BLOCK

▶ Do while statement: do CODE BLOCK while (i < 15)

▶ For statement: for (int i = 0; i < 5; i++) CODE BLOCK

▶ Switch statement: switch (month) { case 1: str = "January"; break; /*... */}

Reiter Session 12: Recap 3 / 14

Recap: What’s a Java Program?
Expressions

▶ Many statements make use of expressions
▶ Expressions are

▶ Literal values 5 , true , 'c'

▶ Variables i

▶ Function calls add(5, c)

▶ Operations 5 + c

Operators: + , - , * , / , % , ++ , -- , < , > , <= , >= , =! , == , instanceof , && , || , …

▶ Expressions
▶ are evaluated at run time
▶ have a clearly defined type at compile time

Reiter Session 12: Recap 4 / 14

Recap: What’s a Java Program?
Expressions

▶ Many statements make use of expressions
▶ Expressions are

▶ Literal values 5 , true , 'c'

▶ Variables i

▶ Function calls add(5, c)

▶ Operations 5 + c

Operators: + , - , * , / , % , ++ , -- , < , > , <= , >= , =! , == , instanceof , && , || , …
▶ Expressions

▶ are evaluated at run time
▶ have a clearly defined type at compile time

Reiter Session 12: Recap 4 / 14

Recap: Variables and Functions

Variables
▶ Placeholders for values
▶ Can change their value
▶ Are only accessible within a function block (scope)

Functions static int myFunction(String s, boolean b) { /*... */}

▶ Allow encapsulating functionality
▶ Dealing with complexity
▶ Signature: Name and typed arguments
▶ Return value

▶ The result of a function
▶ void : There is no return value

Reiter Session 12: Recap 5 / 14

Recap: Variables and Functions

Variables
▶ Placeholders for values
▶ Can change their value
▶ Are only accessible within a function block (scope)

Functions static int myFunction(String s, boolean b) { /*... */}

▶ Allow encapsulating functionality
▶ Dealing with complexity
▶ Signature: Name and typed arguments
▶ Return value

▶ The result of a function
▶ void : There is no return value

Reiter Session 12: Recap 5 / 14

Recap: Types

▶ Variables and expressions have a type
▶ Primitive types: int , boolean , char , double , byte , short , long , float

▶ Reference types: String , T[] (arrays), Horse (classes we define), …

▶ Arrays
▶ Store a list of things of the same type
▶ Items are enumerated and addressed with their index number

Example
1 int[] iArray = new int[2];
2 iArray[0] = 14;
3 iArray[1] = 3;
4 int j = iArray[0]; // j becomes 14

Reiter Session 12: Recap 6 / 14

Recap: Types

▶ Variables and expressions have a type
▶ Primitive types: int , boolean , char , double , byte , short , long , float

▶ Reference types: String , T[] (arrays), Horse (classes we define), …
▶ Arrays

▶ Store a list of things of the same type
▶ Items are enumerated and addressed with their index number

Example
1 int[] iArray = new int[2];
2 iArray[0] = 14;
3 iArray[1] = 3;
4 int j = iArray[0]; // j becomes 14

Reiter Session 12: Recap 6 / 14

Recap: Classes and Objects
▶ Core ingredients of object-oriented programming
▶ Define our own types to reflect our domain of interest
▶ Encapsulate data and behaviour
▶ Allows writing modularized programs

Example

public class Address {
String street;
String houseNumber;
int postcode;
String city;
String country;

public String getStreetPart() {
if (country.equalsIgnoreCase("Germany")) {

return this.street + " " + this.houseNumber;
} else if (country.equalsIgnoreCase("France")) {

return this.houseNumber + ", " + this.street;
}

}
}

Address a = new Address();
a.street = "Universitätsstraße"
a.houseNumber = "22";

a.country = "Germany";
a.getStreetPart();

// returns "Universitätsstraße 22"

a.country = "France";
a.getStreetPart();

// returns "22, Universitätsstraße"

Recap: Classes and Objects
▶ Core ingredients of object-oriented programming
▶ Define our own types to reflect our domain of interest
▶ Encapsulate data and behaviour
▶ Allows writing modularized programs

Example

public class Address {
String street;
String houseNumber;
int postcode;
String city;
String country;

public String getStreetPart() {
if (country.equalsIgnoreCase("Germany")) {

return this.street + " " + this.houseNumber;
} else if (country.equalsIgnoreCase("France")) {

return this.houseNumber + ", " + this.street;
}

}
}

Address a = new Address();
a.street = "Universitätsstraße"
a.houseNumber = "22";

a.country = "Germany";
a.getStreetPart();

// returns "Universitätsstraße 22"

a.country = "France";
a.getStreetPart();

// returns "22, Universitätsstraße"

Recap: Classes and Objects
▶ Core ingredients of object-oriented programming
▶ Define our own types to reflect our domain of interest
▶ Encapsulate data and behaviour
▶ Allows writing modularized programs

Example

public class Address {
String street;
String houseNumber;
int postcode;
String city;
String country;

public String getStreetPart() {
if (country.equalsIgnoreCase("Germany")) {

return this.street + " " + this.houseNumber;
} else if (country.equalsIgnoreCase("France")) {

return this.houseNumber + ", " + this.street;
}

}
}

Address a = new Address();
a.street = "Universitätsstraße"
a.houseNumber = "22";

a.country = "Germany";
a.getStreetPart();

// returns "Universitätsstraße 22"

a.country = "France";
a.getStreetPart();

// returns "22, Universitätsstraße"

Recap: Classes and Objects
Staticness and Visibility

Methods and Fields

Staticness Accessibility/Visibility

Static Non-Static Private Protected Public
static private protected public

Reiter Session 12: Recap 8 / 14

Recap: Classes and Objects
Inheritance

▶ A class may inherit from one other class
▶ Keyword: extends , used in the class declaration: public class Horse extends Animal { ... }

▶ Horse: sub class
▶ Animal: super class

▶ Useful to model domain hierarchies, e.g., animal species

▶ Objects of sub class can use methods/access fields defined in super class
▶ Sub class may override method defined in super class

Reiter Session 12: Recap 9 / 14

Recap: Classes and Objects
Inheritance

▶ A class may inherit from one other class
▶ Keyword: extends , used in the class declaration: public class Horse extends Animal { ... }

▶ Horse: sub class
▶ Animal: super class

▶ Useful to model domain hierarchies, e.g., animal species
▶ Objects of sub class can use methods/access fields defined in super class
▶ Sub class may override method defined in super class

Reiter Session 12: Recap 9 / 14

Recap: Classes and Objects
Interfaces, Abstract Classes, Abstract Methods

▶ Abstract classes
▶ Cannot be instantiated
▶ But can be inherited

▶ Abstract methods
▶ Can only appear in abstract classes
▶ An abstract method does not have a body
▶ An inheriting class must provide the method body

▶ Interface: A class, but
▶ There are no fields
▶ All methods are abstract
▶ It is abstract

Reiter Session 12: Recap 10 / 14

Recap: Classes and Objects
Interfaces, Abstract Classes, Abstract Methods

▶ Abstract classes
▶ Cannot be instantiated
▶ But can be inherited

▶ Abstract methods
▶ Can only appear in abstract classes
▶ An abstract method does not have a body
▶ An inheriting class must provide the method body

▶ Interface: A class, but
▶ There are no fields
▶ All methods are abstract
▶ It is abstract

Reiter Session 12: Recap 10 / 14

Interfaces vs. Abstract Classes

▶ Similar concepts: No instantiation, abstract methods
▶ Difference: A class can inherit from only one class, but can implement multiple interfaces

Multiple inheritance
▶ We often want to inherit from multiple classes

▶ E.g., the class Dog inherits from Animal and Pet
▶ This is not allowed in Java

▶ Because if Animal and Pet both define a method eat() , we don’t know which is executed
▶ But class Dog could inherit from Animal and implement the interface Pet

public class Dog extends Animal implements Pet { /*... */}

Reiter Session 12: Recap 11 / 14

Interfaces vs. Abstract Classes

▶ Similar concepts: No instantiation, abstract methods
▶ Difference: A class can inherit from only one class, but can implement multiple interfaces

Multiple inheritance
▶ We often want to inherit from multiple classes

▶ E.g., the class Dog inherits from Animal and Pet
▶ This is not allowed in Java

▶ Because if Animal and Pet both define a method eat() , we don’t know which is executed
▶ But class Dog could inherit from Animal and implement the interface Pet

public class Dog extends Animal implements Pet { /*... */}

Reiter Session 12: Recap 11 / 14

Another Use Case for Interfaces

▶ Sorting things in a collection is a well-studied task in computer science
▶ Different approaches exist, with different time and space requirements

▶ Computer science: We sort collections of numbers
▶ Because numbers have an obvious true ordering (5 comes before 10)
▶ And for any two numbers, we can specify, which comes first

▶ Real world: We want to sort other things, e.g., entries in an address book!
▶ If we can specify which of two entries comes first, can we use the sorting algorithm from CS?
▶ Sure: Just implement this interface, and provide it to the (generic) sort function

public interface CompareTwoItems { public int compare(Object e1, Object e2) { /*... */} }

▶ This is how java.util.Arrays: sort() works

Reiter Session 12: Recap 12 / 14

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Another Use Case for Interfaces

▶ Sorting things in a collection is a well-studied task in computer science
▶ Different approaches exist, with different time and space requirements
▶ Computer science: We sort collections of numbers

▶ Because numbers have an obvious true ordering (5 comes before 10)
▶ And for any two numbers, we can specify, which comes first

▶ Real world: We want to sort other things, e.g., entries in an address book!
▶ If we can specify which of two entries comes first, can we use the sorting algorithm from CS?
▶ Sure: Just implement this interface, and provide it to the (generic) sort function

public interface CompareTwoItems { public int compare(Object e1, Object e2) { /*... */} }

▶ This is how java.util.Arrays: sort() works

Reiter Session 12: Recap 12 / 14

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Another Use Case for Interfaces

▶ Sorting things in a collection is a well-studied task in computer science
▶ Different approaches exist, with different time and space requirements
▶ Computer science: We sort collections of numbers

▶ Because numbers have an obvious true ordering (5 comes before 10)
▶ And for any two numbers, we can specify, which comes first

▶ Real world: We want to sort other things, e.g., entries in an address book!
▶ If we can specify which of two entries comes first, can we use the sorting algorithm from CS?
▶ Sure: Just implement this interface, and provide it to the (generic) sort function

public interface CompareTwoItems { public int compare(Object e1, Object e2) { /*... */} }

▶ This is how java.util.Arrays: sort() works

Reiter Session 12: Recap 12 / 14

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

Another Use Case for Interfaces

▶ Sorting things in a collection is a well-studied task in computer science
▶ Different approaches exist, with different time and space requirements
▶ Computer science: We sort collections of numbers

▶ Because numbers have an obvious true ordering (5 comes before 10)
▶ And for any two numbers, we can specify, which comes first

▶ Real world: We want to sort other things, e.g., entries in an address book!
▶ If we can specify which of two entries comes first, can we use the sorting algorithm from CS?
▶ Sure: Just implement this interface, and provide it to the (generic) sort function

public interface CompareTwoItems { public int compare(Object e1, Object e2) { /*... */} }

▶ This is how java.util.Arrays: sort() works

Reiter Session 12: Recap 12 / 14

https://docs.oracle.com/javase/7/docs/api/java/util/Arrays.html

More questions?

Section 2

Exercise

	Recap
	Exercise

