
Recap: IO and Exceptions

▶ Input and output
▶ Streams: Pipes through which data flows

▶ When something has consumed, it’s no longer there
▶ Need to be flushed and closed at the end

▶ InputStream/OutputStream: byte-wise operations
▶ Readers/Writers: Used on top of streams to operate on characters

▶ Things can go wrong, even if our program works well
▶ Many error sources with I/O: Files, disks, networks can fail
▶ Exception handling

▶ Mechanism to handle unexpected errors
▶ try {} catch (EX) {}

▶ Exceptions are objects of class java.lang.Exception

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 1 / 17



Session 14: Generics, Code Style, Java Standard Library, Closing
Softwaretechnologie: Java I

Nils Reiter
nils.reiter@uni-koeln.de

January 25, 2023



Section 1

Exercise



Section 2

Java Standard Library



Java Standard Library

Introduction

▶ Programming language core: Rather small
▶ A few types, some statements, some syntactic elements

▶ Libraries
▶ Collections of code, useful for all kinds of things
▶ Many languages have such libraries
▶ To avoid reinventing the wheel, we should use them

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 5 / 17



Java Standard Library

Introduction

▶ Programming language core: Rather small
▶ A few types, some statements, some syntactic elements
▶ Libraries

▶ Collections of code, useful for all kinds of things
▶ Many languages have such libraries
▶ To avoid reinventing the wheel, we should use them

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 5 / 17



Java Standard Library

Java Standard Library

Interesting packages
▶ java.io – Input and output
▶ java.lang – Core functions
▶ java.math – Mathematical functions
▶ java.net – Handling networks and connections
▶ java.text – Simple text processing
▶ java.util – Various utility functions, in particular collections

▶ Will be discussed in depth in the summer term
▶ java.awt, javax.swing – Classes for graphical user interfaces

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 6 / 17



Section 3

Generics



Generics

Introduction

▶ Some classes in the library have < ... > in their name
▶ These are generic classes

Example
▶ We know arrays cannot be increaed in length, which is inconvenient
▶ We can copy the content of an array into a new longer array
▶ We could define a class that encapsulates an array and deals with the copying

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 8 / 17



demo



Generics

Generics

▶ Many classes are “container classes”: They deal with objects of specific types, but do
nothing specific with the type
▶ E.g., MyArray<T> – with T being a parameter that can be filled with any reference type

▶ If we define them as generic, the type of the objects they deal with becomes like a variable
▶ The variable is filled with a concrete type at compile time

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 10 / 17



Section 4

Code Style



Code Style

Introduction

▶ Interaction between programmers is easier, if they adhere to common style
▶ Style: How to write and format variables, methods, classes etc.
▶ Java Code Style

▶ No strict rules, but guidelines
▶ I.e.: There are exceptions, and you’re not punished for violating them

▶ Offical document from 1997:
https://www.oracle.com/technetwork/java/codeconventions-150003.pdf

▶ In Eclipse, you can select the code and use Source > Format to automatically format the
code nicely

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 12 / 17

https://www.oracle.com/technetwork/java/codeconventions-150003.pdf


Code Style

Java Code Style

▶ CamelCase is used for combining words (instead of underscore or dot)
▶ Class and interface names start with an upper case letter (MyArray) and are nouns
▶ Methods names start with a lower case letter (get()) and are verb phrases
▶ Variables start with a lower-case letter and are as long as it needs to be for clarity

▶ Variable names like a are dispreferred
▶ Indentation should be used to make the structure of the program visible

▶ Substatements of a statement or declaration should be indented
▶ Indentation should be four spaces wide

▶ Avoid lines longer than 80 characters
▶ Files longer than 2000 lines are cumbersome and should be avoided.
▶ …

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 13 / 17



Code Style

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 14 / 17



Section 5

Closing



Closing

Learning Programming

▶ Learning to program is hard and takes time
▶ It helps to

▶ Regularly do it
▶ Talk about it
▶ Be stubborn
▶ Think formalistic
▶ Be fearless and disrespectful
▶ Read documentation
▶ Try to understand your mistakes

▶ It’s ok to make mistakes

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 16 / 17



Closing

Looking Ahead
What happens in the summer term
▶ Version control (= git)
▶ Recursion
▶ Data structures
▶ Unit testing
▶ Efficient programming
▶ Multithreading
▶ …

Programming Ideas for the Break
▶ A simple game such as Tic Tac Toe

▶ Turn-based games are simpler than real time games
▶ Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
▶ Make algorithmic art (e.g., ASCII art)

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 17 / 17



Closing

Looking Ahead
What happens in the summer term
▶ Version control (= git)
▶ Recursion
▶ Data structures
▶ Unit testing
▶ Efficient programming
▶ Multithreading
▶ …

Programming Ideas for the Break
▶ A simple game such as Tic Tac Toe

▶ Turn-based games are simpler than real time games
▶ Birthday predictor (read in a list of birthdays, calculate the next round anniversaries)
▶ Make algorithmic art (e.g., ASCII art)

Reiter Session 14: Generics, Code Style, Java Standard Library, Closing 17 / 17


	Exercise
	Java Standard Library
	Generics
	Code Style
	Closing

