Computational Linguistics, Corpora, Counting Words Sprachverarbeitung ($VL + \ddot{U}$)

Nils Reiter

April 6, 2023

Section 1

Computational Linguistics

Brief history of Computational Linguistics I

- ▶ 1933: Russian engineer Troyanskii gets a patent on a mechanical translation device Hutchins/Lovtskii (2000)
- ▶ 1950s: DARPA Projects to automatically translate Russian into English
- ▶ 1957/65: Linguistics shifts focus from describing to generating Chomsky (1957, 1965)
- ▶ 1959: Theo Lutz for the first time generates a German poem with a computer Bernhart (2020); Lutz (1959)
- ▶ 1962: Foundation of the »Association for Machine Translation and Computational Linguistics«, 1968 renamed to »Association for Computational Linguistics (ACL)«
- ▶ 1966, ALPAC report: MT more expensive, less accurate and slower than human translation
 ALPAC (1966)
- ▶ 1968: Foundation of SYSTRAN, first MT company
- ▶ 1975: European commission uses SYSTRAN software (first use of MT on EU level)

Brief history of Computational Linguistics II

▶ 1984: First corpus-based commercial MT system

Nagao (1984)

- ▶ 1992: Study programs established in Germany (Saarbrücken/Stuttgart)
- ▶ 2011: IBM Watson beats two humans in Jeopardy YouTube / Apples Siri launched
- ➤ 2013: Word embeddings (e.g., word2vec)

Mikolov et al. (2013)

- ▶ 2017: Launch of the DeepL Translator (a Cologne-based company)
- 2018: Transformer models: BERT

Devlin et al. (2019)

► 2022: ChatGPT chat.openai.com

[G] | chac.openal.com

▲ Yes, we need to talk about ChatGPT ◆

Computational Linguistics

Today

- It's an interesting time to do CL
- ▶ For a long time: Fundamental Research, and real applications are far in the future
- Huge changes in the past 10 years: CL methods are now used everyday by everyone
- This changes how research should be done (e.g., ethical considerations)
- ► ChatGPT (and other applications) raise expectation, that language processing is a solved problem

Computational Linguistics

Today

- It's an interesting time to do CL
- ▶ For a long time: Fundamental Research, and real applications are far in the future
- Huge changes in the past 10 years: CL methods are now used everyday by everyone
 This changes how research should be done (e.g., ethical considerations)
- ► ChatGPT (and other applications) raise expectation, that language processing is a solved problem

Discussion Panel: 29.06.2023, 17:45-19:15

Are we done? Computational Linguistics between linguistics, digital humanities and large language models

- ▶ Berenike Herrmann (Digital Humanities, Bielefeld University)
- Mark Finlayson (CL, Florida International University, Miami)
- ► Klaus von Heusinger (Linguistics, University of Cologne)

Digital Humanities and Computational Linguistics

- ▶ Digital Humanities, broadly: Working with >digital methods
 on humanities subjects
- Linguistics: Study of language
- ► Computational Linguistics: Pioneer DH area

... but this is a minority position in CL, often also seen as part of AI

Reiter (2014, 4)

Digital Humanities and Computational Linguistics

- ▶ Digital Humanities, broadly: Working with >digital methods< on humanities subjects</p>
- Linguistics: Study of language
- Computational Linguistics: Pioneer DH area

Reiter (2014, 4)

- ... but this is a minority position in CL, often also seen as part of AI
- ► Historically (and still today) split between engineering (natural language processing, NLP) and science/scholarship (computational linguistics, CL)
- A Neurolinguistic programming and natural language processing are not the same (both use)NLP(as abbreviation)

Digital Humanities and Computational Linguistics

- Digital Humanities, broadly: Working with >digital methods(on humanities subjects
- Linguistics: Study of language
- Computational Linguistics: Pioneer DH area

Reiter (2014, 4)

- ... but this is a minority position in CL, often also seen as part of AI
- ► Historically (and still today) split between engineering (natural language processing, NLP) and science/scholarship (computational linguistics, CL)
- ▲ Neurolinguistic programming and natural language processing are not the same (both use >NLP (as abbreviation)

University of Cologne

For historic reasons, CL and NLP are called »Sprachliche Informationsverarbeitung«

Experiments

- ► Cornerstone of the >scientific method (
- ▶ Used in many disciplines: Natural sciences, social sciences, medicine, ...

Experiments

- ► Cornerstone of the >scientific method (
- ▶ Used in many disciplines: Natural sciences, social sciences, medicine, ...
- Experiments are used to verify or falsify hypotheses
- ▶ Reproducibility: The outcome does not depend on the experimenter

Experiments

- ► Cornerstone of the >scientific method (
- ▶ Used in many disciplines: Natural sciences, social sciences, medicine, ...
- Experiments are used to verify or falsify hypotheses
- Reproducibility: The outcome does not depend on the experimenter
- ► CL: Hypotheses about the operationalisation of language/text phenomena

Example

Position within a sentence is indicative for the part of speech

Session 1 9/35

Session 1 9/35

Session 1 9/35

Checkliste zu NLP-Experimenten zur Klassifikation

Stand: 20. December 2022

Hierosko

- Wenn Br Tank kein Klassifikationstank ist, dann ist dieser Frageboren nicht für Sie.
- Markieren Sie alle Punkte die Sie planen umzusetzen.
- . The Erandones let being Prifferer numbers direct als Hilliand-base had der Penarimantalassen
- . Bei France schreiben Sie eerne eine E-Mail au mila, reiter@uni-knela, de oder melden Sie

Der Task

- 1. Die Aufsche beifft: 2. Ee handelt sich um □ Textidassifikation, □ Sequence Labeling, oder □ Sonstiges
- 3. Die zu klassifzierenden Instanzen sind:
- 4. Er gibt ______Kategorien/Klassen.
- 5. Einer Instanz konn O genau eine oder O mehrere Klassen augewiesen werden.
- 1. Associate Dates O licen benefit we oder O misses such contrib works.
- 2. In den Daten sind ______ Instances (von e.g. Typ) annoticet.
- O abidoustellt (d.b. lode Klesse ist smeetide sleich biselle) O unterchiedlich verteilt, und zwar:

- Nur relevant, wenn neue Daten annotiert werden sollen. (Frage Task:1)
- D bb wewende die folgenden, bereits existierenden Annotationerichtlinien: - Mit diesen wurde ein Inter-Ausotator-Agreement von ___erzielt (Metrik: _____).

- O Ich appotiere selbet.
- ☐ Ich secondo Associationen über eine Dudrass, u.B. mittels LimeSurvey
- ☐ Ich samule Annotationen über crowd sourcine.
- Associator innen treffen eine Associationsenterheidung auf der Basis eines Kontextes von
 Wir-
- O Six binners dabel authorities die februates Winnersonalites provender: O Wildrandis O Louise
- 4. Authorizanten an Associationmoltonen
- Associator issues suineen Sonnen selbet markieren können.

- O Well die Klassen unsbish verteilt sind, hieter sich eine majority baseline zu.
- O Well die Klassen steich verteilt sind, bietet sich eine madem baseline an.
- ☐ Eine weitere mögliche Baseline ist: ☐ Eine weitere mögliche Baseline ist:

Day Experiment

- C Exterboldsmenhaum / Decision Tree (DT) O Nator Barre
- ☐ Support Vector Machines (SVM)
- O Novel Nationals (NN)
- C Bournest Neural Networks
- C Transformer-Ambitektur (BERT & co.)
- ☐ Sometige:

O Metadatesc

- ☐ Worthäufigkeiten (von allen Wörtern), auch bekannt als hag of words

- ☐ Histligkeiten von Wörtern aus folgenden Wortlieten:
- ☐ Embeddings (a.B. Word Embeddings) O Secretarially Information (d.): Klassiffortionserscheiner für Hamonte deuts oder danach)
- O Themselische Informationen von einem Tonic Model (v.B. Latest Dirichlet Albertien, I.DA)
- 3. Meine Features haben die februnden Datentynen:
- ☐ Ich telle meinen o.g. Datensatz selbst in Trainige- und Testdaton auf. ______% der Instancen
 - □ Ich verwende N-fold cross validation, mit N = ☐ Trainings— and Testdates sind bereits anfected; v.B. well or Dates are circus shared task sind.
- die Größe des Trainingsdatementnes (z.B. 100, 1000, 10000 Instances für den Trainingsdatements) ☐ die Menge an oder Art von Fratures die verwendet werden (z.B. inhaltliche vs. sprachliche Fratures)
- Character State State Company of the State o ☐ die Vorwenscheitung (z.B. Goof- und Kleinscheitung)
- 6. Meine Hypothese ist:

Die Auswertung und Evoluation

- I. Ich verwende die Evaluationemetrik(en)
 O Accuracy
 O Provision
 O Booall
 O E-Measure
 O Accuracy
 O Accuracy
- O Sonstige: O Moine Tortdoon sind stark subalanciest (Frace Dates X), daher verwende ich die Metriken in der Mikro-

Die nraktische Umsetzung

- 1. Ich summende die Danamenselenementer O Pethon C Java
- O Job vertice they since Counster
- O der sine GPU mit CUDA-Unterstitzung hat oder ein Mac mit M1/M3-Promuer ist.
- O leb loan mich ner SSH auf einem Server einberen

Literature

Dan Jurafsky/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of January 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/ JM23

Literature

Dan Jurafsky/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of January 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/ JM23

Christopher D. Manning/Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press MS99

Literature

Dan Jurafsky/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of January 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/ JM23

Christopher D. Manning/Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press MS99

lan H. Witten/Eibe Frank (2005). *Data Mining*. 2nd ed. Practical Machine Learning Tools and Techniques. Elsevier WF05

Session 1 11 / 35

Section 2

Corpora

Corpora

- ► (Large) collections of linguistic expressions
- ► Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- ► Text corpora: Written language
 - File formats: txt, xml, json, ...

Corpora

- ▶ (Large) collections of linguistic expressions
- ► Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- ► Text corpora: Written language
 - File formats: txt, xml, json, ...
- ▶ Why do we look at corpora?

Corpora

- ► (Large) collections of linguistic expressions
- ► Speech corpora: Spoken language
 - File formats: wav, mp3, ...
- Text corpora: Written language
 - File formats: txt, xml, json, ...
- ▶ Why do we look at corpora?
 - Making statements about language needs to take into account many language expressions
 - ▶ We under-estimate creativity, flexibility and productivity of language use
 - → Empiricism

Meta data and annotations

Meta data: Data about the data

- ► Information about the corpus
- Language, date of creation, author(s), publication source, ...
- ► Machine-readable: XML, JSON, CSV, ...

Session 1 14 / 35

Meta data and annotations

Meta data: Data about the data

- ► Information about the corpus
- Language, date of creation, author(s), publication source, ...
- Machine-readable: XML, JSON, CSV, ...

Annotations: Data about parts of the corpus

- Examples
 - Linguistic annotation: Parts of speech, named entities, syntactic relations, ...
 - Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, ...

14 / 35

Meta data and annotations

Meta data: Data about the data

- Information about the corpus
- ► Language, date of creation, author(s), publication source, ...
- ► Machine-readable: XML, JSON, CSV, ...

Annotations: Data about parts of the corpus

- Examples
 - Linguistic annotation: Parts of speech, named entities, syntactic relations, ...
 - ▶ Non-linguistic annotation: Sentiment expressions, rhetoric devices, arguments, ...
- ► Explicit location in the corpus: Document/word/character numbers in text, milliseconds in speech

Session 1 14 / 35

Preparations (for text corpora)

- ▶ OCR: Optical Character Recognition (MS99, 123)
 - ► Convert images (e.g., from a scan) into text
 - ► Huge improvements in last five years

Session 1 15 / 35

Preparations (for text corpora)

- ▶ OCR: Optical Character Recognition (MS99, 123)
 - Convert images (e.g., from a scan) into text
 - Huge improvements in last five years
- Encoding: How to specify characters in a computer
 - ▶ Simple: ASCII (7 bit per character, $2^7 = 128$ different characters)
 - ▶ Outdated: Latin-1 / ISO-8859 (8 bit, $\Rightarrow 256$ diff. characters)
 - ► Modern: Unicode (e.g., UTF-8)
 - ► 1 B/char to 4 B/char
 - ▶ 1112064 characters can be represented

Session 1 15 / 35

Tools and Techniques

- Plain text editors
 - ► We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - ► Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi

Session 1 16 / 35

Tools and Techniques

- Plain text editors
 - We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - ► Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi
- Regular expressions
 - ► The most important tool for corpus analysis
 - Cleanup (e.g., after scraping a corpus from the web)
 - Analysis (e.g., to find all variants of a word or deal with slang)
 - ► Usable in *all** programming languages and find tools

Session 1 16 / 35

Tools and Techniques

- Plain text editors
 - We often want to inspect the corpus as it is on disk (i.e., without an editor interfering too much)
 - Mac: Textmate/emacs/vi; Windows: Notepad++/emacs/vi
- Regular expressions
 - ► The most important tool for corpus analysis
 - Cleanup (e.g., after scraping a corpus from the web)
 - Analysis (e.g., to find all variants of a word or deal with slang)
 - ▶ Usable in *all** programming languages and find tools
- Command line
 - Large corpora often cannot be displayed with GUI tools
 - Command line tools faster and more memory efficient

Tokenization

- ► Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...

Session 1 17 / 35

Tokenization

- ► Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...
- ▶ Naive: Splitting at white space (space, newline, ...)
 - ► Why naive?

Session 1 17 / 35

Tokenization

- Segmenting a corpus into individual units
- ► Tokens: Words, punctuation, numbers, symbols, ...
- ▶ Naive: Splitting at white space (space, newline, ...)
 - ► Why naive?
- ► Solved, but complex
 - E.g., syntactic points vs. morphological points
- ► Sometimes, shortcuts are ok depends on the use case

Session 1 17 / 35

Word Counts

Count	Word
585	die
584	und
407	er
404	der
348	zu
311	sich
259	nicht
250	sie
243	in
243	den
233	war
218	Gregor
189	mit
178	das
176	auf
171	es
162	dem
155	hatte
137	ein
136	aber
133	daß
123	als
110	auch
107	Schwester

Session 1 18 / 35

Word Counts

Count	Word		
585	die		
584	und		
407	er		
404	der		
348	zu		
311	sich		
259	nicht		
250	sie		
243	in		
243	den		
233	war		
218	Gregor		
189	mit		
178	das		
176	auf		
171	es		
162	dem		
155	hatte		
137	ein		
136	aber		
133	daß		
123	als		
110	auch		
107	Schwester		

- Number of words in a text
- ► Most frequent words (MFW) are function words
- ➤ Content words that appear often indicate text content

Session 1 18 / 35

Zipf's Law MS99, 23 ff.

- George Kingsley Zipf (1902-1950): American Linguist
- Basic property of human language
 - Frequency distribution of words (in a corpus) is stable
 - Word frequency is inversely proportional to its position in the ranking

$$f \propto \frac{1}{2}$$

(there is a constant k, such that $f \times r = k$)

19 / 35

Zipf's Law MS99, 23 ff.

Figure: Words sorted after their frequency (red). Text: Kafka's »Die Verwandlung«.

Zipf's Law MS99, 23 ff.

Figure: Words sorted after their frequency (red). Zipf distribution: $y=600\frac{1}{x}$ (green). Text: Kafka's »Die Verwandlung «.

Zipf's Law MS99, 23 ff.

Figure: Words sorted after their frequency (red). Zipf distribution: $y=600\frac{1}{x}$ (green). Text: Kafka's »Die Verwandlung «.

Consequences

- Very few words appear with very high frequency
- The vast majority of words appear only once
 - ► It's difficult to learn something about these words!

Counting Words

- ► Absolute numbers are not that interesting
- ▶ Insights are only generated through comparison

Abs. number	Word form
20	women
67	woman
31	men
79	family
82	sister
83	friend
99	bath
117	father
133	man
144	sir

Table: Jane Austens's *Persuasion* (nouns)

Table: Jane Austens's Sense and Sensibility

Absolute Numbers

Word	Persuasion	Sense
woman	67	68
women	20	11
man	133	121
men	31	23
sister	82	282

...does it make sense to compare absolute numbers? No.

Absolute Numbers

Word	Persuasion	Sense	
woman	67	68	
women	20	11	
man	133	121	
men	31	23	
sister	82	282	

...does it make sense to compare absolute numbers? No.

- ► The texts/corpora do not have the same size
- ▶ Scaling using their length: Division by the total number of words

Absolute Numbers

Word	Persuasion		Sense	
woman	67	0.00079%	68	0.00055%
women	20	0.00024%	11	0.00009%
man	133	0.00158%	121	0.00100%
men	31	0.00037%	23	0.00019%
sister	82	0.00097%	282	0.00233%

...does it make sense to compare absolute numbers? No.

- ► The texts/corpora do not have the same size
- ▶ Scaling using their length: Division by the total number of words
- ▶ Visible changes: Proportion of »sister«: $3.4 \rightarrow 2.4$

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - ▶ »In a text that is much shorter, there are much less chances for a certain word to be used.«

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - ▶ »In a text that is much shorter, there are much less chances for a certain word to be used.«

Recipe

- Divide the result of the measurement by the theoretical maximum
- How many chances are there for »sister« to be used?
 - As many as there are words in the text
- ▶ Thus, we divide by the total number of words

Scaling

- Number of words: Result of a measurement
- ▶ If measuring in different scenarios, it's important to scale the results
 - ▶ »In a text that is much shorter, there are much less chances for a certain word to be used.«

Recipe

- Divide the result of the measurement by the theoretical maximum
- How many chances are there for »sister« to be used?
 - As many as there are words in the text
- ▶ Thus, we divide by the total number of words
- ▶ It's not always obvious how to scaled
- ▶ When reading research: Was it scaled, and how?

Computational Linguistics

Corpora

Counting Words

Types and Tokens

N-Grams

Summary

- ▶ If a text has been tokenized, we can access individual units: Tokens
- ▶ Not all tokens are words: Punctuation, detached prefixes, ...

Session 1 25/35

- ▶ If a text has been tokenized, we can access individual units: Tokens
- ▶ Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

- ▶ If a text has been tokenized, we can access individual units: Tokens
- ▶ Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

Example

the cat chases the mouse

- ▶ If a text has been tokenized, we can access individual units: Tokens
- ▶ Not all tokens are words: Punctuation, detached prefixes, ...
- ▶ We are often also interested in different tokens: Types

Example

the cat chases the mouse

- ► Tokens: the, cat, chases, the, mouse
- Types: the, cat, chases, mouse

▶ What is the relation between number of tokens and number of types?

- ▶ What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!

- ▶ What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - »the dog barks loudly .«

- ▶ What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - »the dog barks loudly .«
- ► Construct a sentence with 5 tokens and 4 types!

- What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - »the dog barks loudly .«
- ► Construct a sentence with 5 tokens and 4 types!
 - »the cat loves the mouse«

- ▶ What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - »the dog barks loudly .«
- ► Construct a sentence with 5 tokens and 4 types!
 - »the cat loves the mouse«
- ► Construct a sentence with 5 tokens and 1 type!

- ▶ What is the relation between number of tokens and number of types?
- Construct a sentence with 5 tokens and 5 types!
 - »the dog barks loudly .«
- Construct a sentence with 5 tokens and 4 types!
 - »the cat loves the mouse«
- Construct a sentence with 5 tokens and 1 type!
 - »dog dog dog dog « (not really a sentence ...)
 - ▶ It's not possible to create a proper sentence with 1 type

ion 1 26 / 35

► Measure for >lexical variability (

$$TTR = \frac{\text{number of types}}{\text{number of tokens}}$$

► Max value: 1

► Measure for >lexical variability (

$$TTR = \frac{\text{number of types}}{\text{number of tokens}}$$

- ► Max value: 1 (there cannot be more types than tokens)
- ▶ Min value: $\epsilon = \frac{1}{\text{very large number}}$

27 / 35

Measure for >lexical variability

$$TTR = \frac{\text{number of types}}{\text{number of tokens}}$$

- ► Max value: 1 (there cannot be more types than tokens)
- ▶ Min value: $\epsilon = \frac{1}{\text{very large number}}$
- ► Real (German) texts
 - ▶ 1000 words (Wikipedia): $\frac{4021}{10000} = 0.4021$

27 / 35

TTR and Text Length

Figure: Type-Token-Ratio for increasing text lengths

TTR and Text Length

Figure: Type-Token-Ratio for increasing text lengths

- ▶ Increasing length \rightarrow lower TTR!
- ► Why?

TTR and Text Length

Figure: Type-Token-Ratio for increasing text lengths

- ▶ Increasing length \rightarrow lower TTR!
- ► Why?- Zipf!

Standardized TTR (STTR)

- ► Calculate TTR over windows of fixed size (e.g., 1000 words)
- ► Calculate arithmetic mean over TTR values

Standardized TTR (STTR)

- ► Calculate TTR over windows of fixed size (e.g., 1000 words)
- ► Calculate arithmetic mean over TTR values

 $TTR_n = \frac{\text{number of types in } n \text{th window}}{\text{number of tokens in } n \text{th window}}$

Standardized TTR (STTR)

- Calculate TTR over windows of fixed size (e.g., 1000 words)
- Calculate arithmetic mean over TTR values.

$$TTR_n = \frac{\text{number of types in } n \text{th window}}{\text{number of tokens in } n \text{th window}}$$

$$STTR = \frac{1}{w} \sum_{i=0}^{w} TTR_i$$

29 / 35

n-grams

► So far: Individual tokens

▶ But: Context is important for linguistic expressions

Session 1 30 / 35

n-grams

► So far: Individual tokens

▶ But: Context is important for linguistic expressions

▶ *n*-gram: A list of *n* directly adjacent tokens

ightharpoonup Popular choices for n: 2 to 4

Session 1 30 / 35

n-grams

- So far: Individual tokens
- But: Context is important for linguistic expressions
- ▶ n-gram: A list of n directly adjacent tokens
 - ightharpoonup Popular choices for n: 2 to 4

Example

The dog barks.

- ► 1-grams: »the«, »dog«, »barks«, ».«
- ► 2-grams (bigrams): »the dog«, »dog barks«, »barks .«
- ► 3-grams (trigrams): »the dog barks«, »dog barks .«

30 / 35

 $Section \ 3$

Summary

Summary

- ▶ Computational Linguistics as a discipline between computer science and linguistics
 - ▶ also known as »natural language processing«, (NLP)
 - Experiments are important way of making progress in CL
- Corpora
- Types and tokens
- Zipf distribution
- ► Type-Token-Ratio

References I

- ALPAC (1966). Language and Machines. Computers in Translation and Linguistics. Tech. rep. National Research Council.
- Bernhart, Toni (2020). »Beiwerk als Werk. Stochastische Texte von Theo Lutz«. In: editio 34. DOI: 10.1515/editio-2020-0010.
 - Chomsky, Noam (1957). Syntactic Structures. Mouton De Gruyter.
 - (1965). Aspects of the theory of syntax. MIT Press.
- Devlin, Jacob/Ming-Wei Chang/Kenton Lee/Kristina Toutanova (2019). »BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding«. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Association for Computational Linguistics, pp. 4171–4186. DOI: 10.18653/v1/N19-1423.

Session 1 33 / 35

References II

- Hutchins, John/Evgenii Lovtskii (2000). »Petr Petrovich Troyanskii (1894-1950): A Forgotten Pioneer of Mechanical Translation «. In: *Machine Translation* 15.3, pp. 187-221. ISSN: 09226567, 15730573. URL: http://www.jstor.org/stable/40009018.
- Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of January 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.
- Lutz, Theo (1959). »Stochastische Texte«. In: augenblick 4, pp. 3–9. URL: https://www.netzliteratur.net/lutz%5C schule.htm.
- Manning, Christopher D./Hinrich Schütze (1999). Foundations of Statistical Natural Language Processing. Cambridge, Massachusetts and London, England: MIT Press.
- Mikolov, T./K. Chen/G. Corrado/J. Dean (2013). »Efficient Estimation of Word Representations in Vector Space«. In: ArXiv e-prints.

Session 1 34 / 35

References III

Reiter, Nils (2014). »Discovering Structural Similarities in Narrative Texts using Event Alignment Algorithms«. PhD thesis. Heidelberg University, Germany.

Witten, Ian H./Eibe Frank (2005). *Data Mining*. 2nd ed. Practical Machine Learning Tools and Techniques. Elsevier.

Session 1 35 / 35