
Basic Corpus Processing
Sprachverarbeitung (VL + Ü)

Nils Reiter

April 11, 2023



Recap: Command Line

I Login, entering commands
I Help and information about commands: --help, man

I File system navigation: cd, ls

I Tab completion to automatically expand paths
I File system manipulation: mkdir, rmdir, rm, cp, mv

I Remote login: ssh USERNAME@compute.spinfo.uni-koeln.de

Basic Corpus Processing 2 / 25



Today

I Input/output redirection, pipes
I File name patterns
I A few text tools for the command line
I Goal: Basic corpus processing: Counting words and measuring frequencies
I Don’t overthink: We don’t need this very often

Basic Corpus Processing 3 / 25



Steps

1. Corpus identification
I Which corpus exactly do we want to investigate?
I In our case: Complete works of Edgar Allen Poe from Gutenberg dump

2. Preparations: Merge them into one file
3. Simple statistics

I Count the words (= we’re ignoring punctuation)
I Get word frequencies

Basic Corpus Processing 4 / 25



Section 1

1. Identify Works



1. Identify Works

Data

I In general: Depends on the data set and its organization
I Directory /resources/gutenberg/ contains dump from project Gutenberg
I Huge number of files
I Each file corresponds to a book and has an integer id number

I E.g.: id number 2149 can be found in directory 2/1/4/2149/

I Ids are documented in index files
I GUTINDEX.00.txt, GUTINDEX-2011.txt, …

Basic Corpus Processing 6 / 25



1. Identify Works

File Name Patterns

I File paths can contain wildcards
I bla*.txt matches on all file names that start with bla and end on .txt

I * can be anything of any length
I bla?.txt matches on all file names of 8 characters length that start with bla and end on

.txt

I ? can be any single character

Why is that useful?

I Many commands accept multiple file names as arguments
I E.g. cp /old-place/* /new-place/ copies all files from old-place to new-place

Basic Corpus Processing 7 / 25



1. Identify Works

File Name Patterns

I File paths can contain wildcards
I bla*.txt matches on all file names that start with bla and end on .txt

I * can be anything of any length
I bla?.txt matches on all file names of 8 characters length that start with bla and end on

.txt

I ? can be any single character

Why is that useful?

I Many commands accept multiple file names as arguments
I E.g. cp /old-place/* /new-place/ copies all files from old-place to new-place

Basic Corpus Processing 7 / 25



1. Identify Works

Command Line Tool: Grep

1 $ grep "some string" [FILE]

I Searches in file(s) – can be multiple files and/or patterns
I Relevant option: -i for case-insensitive search

Basic Corpus Processing 8 / 25



1. Identify Works

To Do

1. Inspect one index file with less to learn about the file format
2. Search for the author across all index files using grep – identify collections of works
3. Note the numbers

Basic Corpus Processing 9 / 25



Section 2

2. Merge them into one file



2. Merge them into one file

Input and Output Streams

I Each running program has by default three basic IO channels
I (Programs may open additional channels to read from files etc.)

I Standard output (STDOUT): Regular, output of the program
I In Java: System.out.println("bla") goes to the standard output
I By default: The terminal

I Standard error output (STDERR): Reserved for error messages, no buffering
I By default: The terminal

I Standard input (STDIN): Where the program reads from
I By default: The keyboard

Basic Corpus Processing 11 / 25



2. Merge them into one file

Input and Output Streams
Redirection

I > FILE Redirects STDOUT into FILE
� If FILE already exists, it will be overwritten

I >> FILE Redirects STDOUT into FILE, but appends at the end
I 2> FILE Redirects STDERR into FILE, overwrites
I < FILE Read STDIN from FILE, and not from keyboard

I CMD1 | CMD2 redirects STDOUT from CMD1 into STDIN from CMD2
I E.g. $ grep -i poe GUTINDEX* | less

Basic Corpus Processing 12 / 25



2. Merge them into one file

Input and Output Streams
Redirection

I > FILE Redirects STDOUT into FILE
� If FILE already exists, it will be overwritten

I >> FILE Redirects STDOUT into FILE, but appends at the end
I 2> FILE Redirects STDERR into FILE, overwrites
I < FILE Read STDIN from FILE, and not from keyboard
I CMD1 | CMD2 redirects STDOUT from CMD1 into STDIN from CMD2

I E.g. $ grep -i poe GUTINDEX* | less

Basic Corpus Processing 12 / 25



2. Merge them into one file

Command Line Tool: Cat

1 $ cat [SOME_FILES]

I cat prints the entire content of the given files on the command line
I Output of cat can be redirected into a new file: $ cat POE_FILES > Poe.txt

Basic Corpus Processing 13 / 25



2. Merge them into one file

To Do

I Generate a new file called Poe.txt that contains all the works by Poe

Basic Corpus Processing 14 / 25



Section 3

3. Simple Statistics



3. Simple Statistics

Tokenization

Split the texts into tokens
I Today, we ignore punctuation
I General idea: Combination of tools tr and wc

I Intermediate goal: Each token on a separate line

Basic Corpus Processing 16 / 25



3. Simple Statistics

Command Line Tool: Tr

1 $ tr SET1 SET2

I Translates strings: All occurrences of characters in SET1 are replaced by their
counterparts from SET2

I Reads from standard input, writes to standard output

Basic Corpus Processing 17 / 25



3. Simple Statistics

Command Line Tool: Wc

1 $ wc [SOME_FILE]

I Counts words, lines, characters and bytes in a file
� Naive tokenization (i.e., by whitespace)

I See for yourself: $ echo "bla. blubb"| wc detects two words
I Options can control to only count lines etc.

Basic Corpus Processing 18 / 25



3. Simple Statistics

To Do

1. Use tr to make sure every word is on its own line
2. Use wc to count the lines

Basic Corpus Processing 19 / 25



3. Simple Statistics

Word Frequencies

I Which words appear how often in a text?
I Get a list of all words, count each of them
I Basic idea: Use sort to group together the same words, then use uniq to collapse and

count them
I Two additional commands: sort and uniq

Basic Corpus Processing 20 / 25



3. Simple Statistics

Command Line Tool: Sort

1 $ sort [OPTIONS] [FILE]

I Sorts input according to various criteria
I Sorted result printed to STDOUT
I By default: Sort lines alphabetically
I Option -n ensures sorting numerically

Basic Corpus Processing 21 / 25



3. Simple Statistics

Command Line Tool: Uniq

1 uniq [OPTIONS] [INPUT_FILE [OUTPUT_FILE]]

I Groups together subsequent equal lines
I Relevant option: -c count how many lines have been collapsed

Example
Original file:

1 apple
2 apple
3 peach
4 apple

Uniq’ed file:
1 apple
2 peach
3 apple

Basic Corpus Processing 22 / 25



3. Simple Statistics

To Do

1. Use tr to make sure every word is on its own line
I Re-use commands from before!

2. Sort alphabetically
3. Count how many rows can be collapsed
4. Sort numerically
5. Pipe into less to be able to read it

Basic Corpus Processing 23 / 25



Section 4

Exercise



Exercise

Exercise

Our project Gutenberg dump contains two editions of Doyles’ »The Valley of Fear«. We want
to study how they differ (if they differ).
I Find out their id numbers.
I Extract their word frequencies.
I Inspect and compare them (manually). Do you think it’s the same text?

Basic Corpus Processing 25 / 25


	1. Identify Works
	2. Merge them into one file
	3. Simple Statistics
	Exercise

