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Recap: Command Line

I Login, entering commands
I Help and information about commands: --help, man

I File system navigation: cd, ls

I Tab completion to automatically expand paths
I File system manipulation: mkdir, rmdir, rm, cp, mv

I Remote login: ssh USERNAME@compute.spinfo.uni-koeln.de

Basic Corpus Processing 2 / 25



Today

I Input/output redirection, pipes
I File name patterns
I A few text tools for the command line
I Goal: Basic corpus processing: Counting words and measuring frequencies
I Don’t overthink: We don’t need this very often

Basic Corpus Processing 3 / 25



Steps

1. Corpus identification
I Which corpus exactly do we want to investigate?
I In our case: Complete works of Edgar Allen Poe from Gutenberg dump

2. Preparations: Merge them into one file
3. Simple statistics

I Count the words (= we’re ignoring punctuation)
I Get word frequencies
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1. Identify Works

Data

I In general: Depends on the data set and its organization
I Directory /resources/gutenberg/ contains dump from project Gutenberg
I Huge number of files
I Each file corresponds to a book and has an integer id number

I E.g.: id number 2149 can be found in directory 2/1/4/2149/

I Ids are documented in index files
I GUTINDEX.00.txt, GUTINDEX-2011.txt, …
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1. Identify Works

File Name Patterns

I File paths can contain wildcards
I bla*.txt matches on all file names that start with bla and end on .txt

I * can be anything of any length
I bla?.txt matches on all file names of 8 characters length that start with bla and end on

.txt

I ? can be any single character

Why is that useful?

I Many commands accept multiple file names as arguments
I E.g. cp /old-place/* /new-place/ copies all files from old-place to new-place
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1. Identify Works

Command Line Tool: Grep

1 $ grep "some string" [FILE]

I Searches in file(s) – can be multiple files and/or patterns
I Relevant option: -i for case-insensitive search
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1. Identify Works

To Do

1. Inspect one index file with less to learn about the file format
2. Search for the author across all index files using grep – identify collections of works
3. Note the numbers
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2. Merge them into one file

Input and Output Streams

I Each running program has by default three basic IO channels
I (Programs may open additional channels to read from files etc.)

I Standard output (STDOUT): Regular, output of the program
I In Java: System.out.println("bla") goes to the standard output
I By default: The terminal

I Standard error output (STDERR): Reserved for error messages, no buffering
I By default: The terminal

I Standard input (STDIN): Where the program reads from
I By default: The keyboard
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2. Merge them into one file

Input and Output Streams
Redirection

I > FILE Redirects STDOUT into FILE
� If FILE already exists, it will be overwritten

I >> FILE Redirects STDOUT into FILE, but appends at the end
I 2> FILE Redirects STDERR into FILE, overwrites
I < FILE Read STDIN from FILE, and not from keyboard

I CMD1 | CMD2 redirects STDOUT from CMD1 into STDIN from CMD2
I E.g. $ grep -i poe GUTINDEX* | less
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2. Merge them into one file

Command Line Tool: Cat

1 $ cat [SOME_FILES]

I cat prints the entire content of the given files on the command line
I Output of cat can be redirected into a new file: $ cat POE_FILES > Poe.txt
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2. Merge them into one file

To Do

I Generate a new file called Poe.txt that contains all the works by Poe
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3. Simple Statistics

Tokenization

Split the texts into tokens
I Today, we ignore punctuation
I General idea: Combination of tools tr and wc

I Intermediate goal: Each token on a separate line
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3. Simple Statistics

Command Line Tool: Tr

1 $ tr SET1 SET2

I Translates strings: All occurrences of characters in SET1 are replaced by their
counterparts from SET2

I Reads from standard input, writes to standard output
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3. Simple Statistics

Command Line Tool: Wc

1 $ wc [SOME_FILE]

I Counts words, lines, characters and bytes in a file
� Naive tokenization (i.e., by whitespace)

I See for yourself: $ echo "bla. blubb"| wc detects two words
I Options can control to only count lines etc.
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3. Simple Statistics

To Do

1. Use tr to make sure every word is on its own line
2. Use wc to count the lines
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3. Simple Statistics

Word Frequencies

I Which words appear how often in a text?
I Get a list of all words, count each of them
I Basic idea: Use sort to group together the same words, then use uniq to collapse and

count them
I Two additional commands: sort and uniq
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3. Simple Statistics

Command Line Tool: Sort

1 $ sort [OPTIONS] [FILE]

I Sorts input according to various criteria
I Sorted result printed to STDOUT
I By default: Sort lines alphabetically
I Option -n ensures sorting numerically
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3. Simple Statistics

Command Line Tool: Uniq

1 uniq [OPTIONS] [INPUT_FILE [OUTPUT_FILE]]

I Groups together subsequent equal lines
I Relevant option: -c count how many lines have been collapsed

Example
Original file:

1 apple
2 apple
3 peach
4 apple

Uniq’ed file:
1 apple
2 peach
3 apple
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3. Simple Statistics

To Do

1. Use tr to make sure every word is on its own line
I Re-use commands from before!

2. Sort alphabetically
3. Count how many rows can be collapsed
4. Sort numerically
5. Pipe into less to be able to read it
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Exercise

Exercise

Our project Gutenberg dump contains two editions of Doyles’ »The Valley of Fear«. We want
to study how they differ (if they differ).
I Find out their id numbers.
I Extract their word frequencies.
I Inspect and compare them (manually). Do you think it’s the same text?
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