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Section 1

Basic Probability Theory



Basic Probability Theory

Example: Cards

I 32 cards Ω (sample space)
I 4 ›colors‹: C = {♣,♠,♦,♥}
I 8 values: V = {7, 8, 9, 10, J ,Q,K ,A}
I Individual cards (›outcomes‹) are denoted with value and color: 8♥
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Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}

I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond«

– E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}

I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen«

– E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}

I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10«

– E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card«

– E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Events

I Generally, we draw cards from a (well shuffled) deck
I We define what events we are interested in
I An event can be any subset of the sample space Ω

I Events will be denoted with E

Examples

I »We draw a heart eight« – E = {8♥}
I »We draw card with a diamond« – E = {7♦, 8♦, 9♦, 10♦, J♦,Q♦,K♦,A♦}
I »We draw a queen« – E = {Q♣,Q♠,Q♦,Q♥}
I »We draw a heart eight or diamond 10« – E = {8♥, 10♦}
I »We draw any card« – E = Ω

Session 2 6 / 31



Basic Probability Theory

Basics
Probabilities

I Probability p(E): Ratio of size of E to size of Ω (Laplace)
I 0 ≤ p ≤ 1
I p(E) = 0: Impossible event p(E) = 1: Certain event
I p(E) = 0.000001: Very unlikely event

Example

I If all outcomes are equally likely: p(E) = |E|
|Ω|

I p({8♥}) = 1
32

I p({9♣, 9♠, 9♦, 9♥}) = 4
32

I p(Ω) = 1 (must happen, certain event)
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Basic Probability Theory

Basics
Probability and Relative Frequency

I Probability p: Theoretical concept, idealization, expectation
I Relative Frequency f : Concrete measure

I Normalised number of observed events

Example
After 10 cards (with returning and shuffling), the event ♠ took place 8 times: f ({♠}) = 8

10

I For large numbers of drawings, relative frequency approximates the probability
I lim∞ f = p

I In practice, we will often use determine probabilities by counting relative frequencies
I Assumption: Frequency is measured on representative and large data set
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Basic Probability Theory

Independent Events
Joint Probability

I We are often interested in multiple events (and their relation)
I E : We draw 8♥ two times in a row (putting the first card back)

I E1: First card is 8♥
I E2: Second card is 8♥
I p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
32 ∗ 1

32 = 0.0156

I E : We draw ♥ two times in a row (putting the first card back)
I E1: First card is X♥
I E2: Second card is X♥
I p(E) = p(E1,E2) = p(E1) ∗ p(E2) =

1
4 ∗ 1

4 = 0.0625

I These events are independent
I because we return and re-shuffle the cards all the time
I Drawing 8♥ the first time has no influence on the second drawing
I Default case with dice
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Basic Probability Theory

Dependent Events
Conditional Probability

I We no longer return the card
I E : We draw 8♥ two times in a row

I E1: First card is 8♥
I E2: Second card is 8♥
I p(E1,E2) = p(E1) ∗ p(E2)
I This no longer works, because the events are not independent

I Obvious: Only one 8♥ in the game, and p(E2) has to express that it might be gone

I This is done with the notion of conditional probability
I p(E1,E2) = p(E1) ∗ p(E2|E1)

I p(E2|E1) = 0, therefore p(E) = 0
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Basic Probability Theory

Dependent Events
Conditional Probability
A less obvious example:
I We draw two cards in a row
I E♥: Card is X♥
I E♦: Card is X♦

p(E♥,E♥) = p(E♥) ∗ p(E♥|E♥)

=
8

32
∗ 7

31
= 0.056

p(E♦,E♥) = p(E♦) ∗ p(E♥|E♦)

=
8

32
∗ 8

31
= 0.064
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Basic Probability Theory

Conditional and Joint Probabilities
Another Example

I Setup: We make a survey in a street in Cologne
I We count four types of events in two random variables:

I Person has brown hair (H = B)
I Person has red hair (H = R)
I Person likes to wake up late (W = L)
I Person likes to wake up early (W = E)

I Assumption: B / R and L / E are mutually exclusive
I I.e., a single person cannot have red and brown hair

I A single person can be encoded with two symbols (e.g., »BL«)
� But this combination is not unique – in contrast to the cards example

I All following numbers are made up
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Basic Probability Theory

Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people
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Basic Probability Theory

Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people

p(H = brown) = 50
65 p(H = red) = 15

65
p(W = early) = 30

65 p(W = late) = 35
65

}
sums per row or column
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Basic Probability Theory

Conditional and Joint Probabilities
Example
Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people

I Joint probability: p(W = late,H = brown) = 30
65

I Probability that someone has brown hair and prefers to wake up late
I Denominator: Number of all items

I Conditional probability: p(W = late|H = brown) = 30
50

I Probability that one of the brown-haired participants prefers to wake up late
I Denominator: Number of remaining items (after conditioned event has happened)

Session 2 13 / 31



Basic Probability Theory

Conditional and Joint Probabilities
Example
Relation between hair color H and preferred wake-up time W

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Survey Results, Ω: Group of questioned people

I Joint probability: p(W = late,H = brown) = 30
65

I Probability that someone has brown hair and prefers to wake up late
I Denominator: Number of all items

I Conditional probability: p(W = late|H = brown) = 30
50

I Probability that one of the brown-haired participants prefers to wake up late
I Denominator: Number of remaining items (after conditioned event has happened)

Session 2 13 / 31



Basic Probability Theory

Conditional and Joint Probabilities
Example

brown red margin

early p(W = e,H = b) = 0.31 p(W = e,H = r) = 0.15 p(W = e) = 0.46
late p(W = l,H = b) = 0.46 p(W = l,H = r) = 0.08 p(W = l) = 0.54

margin p(H = b) = 0.77 p(H = r) = 0.23 p(Ω) = 1

Table: (Joint) Probabilities, derived by dividing everything by |Ω|

p(A|B) =
p(A,B)

p(B)
definition of conditional probabilities

p(W = late|H = brown) =
30

50
= 0.6 intuition from previous slide

=
p(W = late,H = brown)

p(H = brown) by applying definition

=
0.46

0.77
= 0.6
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Section 2

Collocations



Collocations

Introduction

A collocation is an expression consisting of two or more words that correspond to some
conventional way of saying things. (Manning/Schütze, 1999, 151)

Examples

I »Das ist mein zweites Frühstück« (adjective noun)
I »Da müssen wir Abhilfe schaffen« (noun verb)
I »Es regnet in Strömen« (verb preposition noun)
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Collocations

Limited Compositionality

I Compositionality: The meaning of linguistic expressions can be understood from
understanding their parts

I Collocations: Not entirely true
I I.e., they are learned by heart and stored in lexicon

I Related concepts
I Idiomatic expressions, metaphors, figure of speech …
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Collocations

Why are Collocations Interesting?

I Generation: Produce natural sounding expressions
E.g., »Da müssen wir Abhilfe schaffen« instead of »Da müssen wir Abhilfe erzeugen«

I Parsing: Collocations are more likely to also be syntactic phrases
I Lexicography: Collocations should be included in dictionaries
I Social justice: Collocations may be important in reinforcing cultural stereotypes
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Collocations

How to Detect Collocations Quantitatively?

Multiple methods
I Frequency
I (Pointwise) Mutual Information
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Subsection 1

Frequency



Collocations

Counting Bigrams

I Simple idea: We count bigrams (i.e., pairs of subsequent tokens)

I Corpus: Wikipedia pages (first 10 000 sentences)
I Again, there are a lot of function words. Why?
I Zipf’s law: Two words that are highly frequent have much higher

chance to co-occur with high frequency
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Collocations

Counting Bigrams
Bigram Frequency

wurde er 630
in der 623
wurde die 501
an der 386
mit dem 363

in die 362
in den 329
mit der 312
wurde das 291
wurde der 291

für die 248
er in 193
war er 181
von der 174
wo er 169

bei den 168
bei der 166
und wurde 165
an die 161
und die 150

er die 143
er als 142
er mit 142
wurden die 142
auf dem 135

für den 133
wurde sie 127
er zum 123
auf der 122
und der 115

in das 110
der Stadt 107
er sich 105
unter dem 105
aus dem 103

aus der 100
durch die 97
der Universität 94
wurde ein 94
an den 93

für das 93
zusammen mit 93
er den 92
nach dem 92
die erste 90

gründete er 90
wurde in 90
mit einer 88
mit einem 87
er nach 85

I Simple idea: We count bigrams (i.e., pairs of subsequent tokens)
I Corpus: Wikipedia pages (first 10 000 sentences)

I Again, there are a lot of function words. Why?
I Zipf’s law: Two words that are highly frequent have much higher

chance to co-occur with high frequency
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Collocations

Counting Bigrams
Content Words

I Content words: Nouns, verbs, adjectives, adverb
I My operationalization here: Remove everything that doesn’t

contain one upper-case letter
I Because verb-verb combinations are rare (as bigrams)
I But we’re missing verb-adverb combinations
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Content Words

I Content words: Nouns, verbs, adjectives, adverb
I My operationalization here: Remove everything that doesn’t

contain one upper-case letter
I Because verb-verb combinations are rare (as bigrams)
I But we’re missing verb-adverb combinations

Bigram Frequency

Jahre alt 56
Bevölkerung waren 47
Prozent waren 46
Jahre später 45
of Fame 44

Hall of 43
New York 41
als Nachfolger 41
Olympischen Spielen 35
Professor für 32

ersten Mal 32
er Mitglied 29
Fame aufgenommen 28
selben Jahr 28
Zweiten Weltkrieg 26

zum Mitglied 25
zum Professor 24
Jahr später 23
zwei Jahre 22
University of 21

Professor an 20
nach Deutschland 20
Betrieb genommen 18
Bevölkerung war 18
Los Angeles 18

drei Jahre 18
als Professor 17
Im Jahr 16
Lehrstuhl für 16
Wohnhäuser mit 16

Zusammenarbeit mit 16
Frankfurt am 15
Institut für 15
Jahre lang 15
nach Paris 14

Gesellschaft für 13
Hochschule für 13
Jahre nach 13
Wohnhäuser und 13
gleichen Jahr 13

kurze Zeit 13
nach Wien 13
Ersten Weltkriegs 12
erste Mal 12
ihrer Ortsteile 12

vier Jahre 12
British Empire 11
DC gewählt 11
Eurovision Song 11
Familie nach 11
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Collocations

Focus Words

I Look at bigrams that contain a specific word
I In this case: »Gründen«
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I Look at bigrams that contain a specific word
I In this case: »Gründen«

Bigram Frequency

gesundheitlichen Gründen 7
Gründen von 3
finanziellen Gründen 2
Gründen abgeben 1
Gründen als 1

Gründen auf 1
Gründen aus 1
Gründen den 1
Gründen die 1
Gründen gab 1

Gründen ihre 1
Gründen interessierte 1
Gründen nach 1
Gründen um 1
Gründen zurück 1

disziplinarischen Gründen 1
gesundheitlichen Problemen 1
nationalpolitischen Gründen 1
paläographischen Gründen 1
persönlichen Gründen 1

politischen Gründen 1
strategischen Gründen 1
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Subsection 2

Point-wise Mutual Information



Collocations

Introduction

Example
»1910 wurde Gerland in Jena.«

I Knowing one word makes predicting the next easier
I One word provides information about the next – it reduces insecurity
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Collocations

Intuition

I We are interested in the (potential)
collocation »außerordentlicher Professor«

I We interpret relative frequencies as probabilities
I If we pick a random word, the probability that it is »Professor«, is 1× 10−4:

p(W = Professor) = 1× 10−4 ' 0.000 107 31
I If we pick two random words, how likely is it that they are »außerordentlicher« and

»Professor«?
p(W = außerordentlicher)× p(W = Professor) = 5.5× 10−10

I This is the probability that these two words appear together – if they are distributed
randomly / independent events
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Collocations

Pointwise Mutual Information

pmi(w1,w2) =

log2

p(B = 〈w1,w2〉)

p(W = w1)p(W = w2)

I Denominator: Probability that the words appear together, if they are distributed randomly
I Numerator: Probability that they actually appear together
I log2: Scales
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Collocations

Interpretations

pmi(w1,w2) = log2
p(w1,w2)

p(w1)p(w2)

I Fraction between real and expected co-occurrence probability

I Thought experiments
I No dependence – co-occurrence has same probability as by chance

I p(w1) = 0.01, p(w2) = 0.01, p(w1,w2) = 0.0001,⇒ pmi(w1,w2) = log2 1 = 0

I Co-occurrence is 8 times more probable than by chance
I p(w1) = 0.01, p(w2) = 0.01, p(w1,w2) = 0.008,⇒ pmi(w1,w2) = log2

0.0008
0.0001

= 3

I Co-occurrence is 8 times less probable than by chance
I p(w1) = 0.01, p(w2) = 0.01, p(w1,w2) = 0.0000125,⇒ pmi(w1,w2) = log2

0.0000125
0.0001

= −3
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Section 3

Summary



Summary

Summary

I Probability theory
I Probability: Ratio of events of interest to all possible events (within event space)
I Joint probability: Two events take place simultaneously
I Conditional probability: One event takes place under the assumption that another event took

place
I Dependent and independent events

I Collocations
I Multiple words that have a meaning beyond their parts (non-compositionality)
I Counting n-grams: Function word combinations are most frequent
I Pointwise Mutual information: Metric how much information one word yields about another
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