
Recap

▶ Regular Expressions
▶ Method to specify large sets of strings quickly
▶ Combination of various special characters
▶ Can be used in grep (and all programming languages)

▶ Concordances
▶ Sometimes also called »keyword in context«
▶ Table with a search query and left and right context

▶ Lecture
▶ Probability theory
▶ Pointwise Mutual Information (PMI) for collocation detection

Processes, tmux, nano, and our first neural network 1 / 14



Last Exercise
Let’s extract a concordance (from poe or any other text)!
▶ Insert a space before each line end
▶ Remove all line breaks
▶ Unify all space to be a single space
▶ Feed the output into grep -o and inspect the concordance
▶ Our query includes the context in characters. Can you extend it such that we get tokens?

Query Ideas
▶ How does Poe write about men and women, how about cats and dogs?
▶ How did he use colors, e.g. red and green? What are things that are red, which things are

green?
▶ Poe is a known horror author. Does he use the word »fear« as a noun or verb? In which

contexts?

Processes, tmux, nano, and our first neural network 2 / 14



Processes, tmux, nano, and our first neural network
Sprachverarbeitung (VL + Ü)

Nils Reiter

April 25, 2023



Organisatorisches

Nächste Woche
▶ Keine Übung (am Dienstag)
▶ Vorlesung (Donnerstag) findet regulär statt

Grund: Berufungsvorträge am 2. und 3. Mai

Processes, tmux, nano, and our first neural network 4 / 14



The Terminal
Command Line

Why?

▶ Powerful: Many »small tasks« can be done directly on the command line
▶ Without writing a full-fledged program for it

▶ Available: Every computer offers a command line as the most basic way of accessing it
▶ Economic: No overhead compared to GUIs

▶ You can get the full machine performance
▶ This also makes it networkable

▶ Simple: Developing GUIs is hard and takes a lot of time
▶ Research software cannot afford this
▶ User interface on the command line is easy to do

▶ In fact: We have done this already in Java 1

Introduction 11 / 21

Slide from
April 4



Performance

▶ Has not really been an issue
▶ Two – related – aspects

1 Time: How fast we get results
▶ Depends on our budget, and how long we are willing to wait

2 Space: How much memory we need in the process
▶ Depends on our budget, and how we code things

Random Access Memory (RAM)
▶ Not: Disk space
▶ Strict upper bound (except for swap space, but that’s very slow)
▶ compute.spinfo: 16 GB RAM

Processes, tmux, nano, and our first neural network 6 / 14



Performance

▶ Has not really been an issue
▶ Two – related – aspects

1 Time: How fast we get results
▶ Depends on our budget, and how long we are willing to wait

2 Space: How much memory we need in the process
▶ Depends on our budget, and how we code things

Random Access Memory (RAM)
▶ Not: Disk space
▶ Strict upper bound (except for swap space, but that’s very slow)
▶ compute.spinfo: 16 GB RAM

Processes, tmux, nano, and our first neural network 6 / 14



htop

▶ We need to find out how much memory our program consumes
▶ The tool $ htop can show us

▶ Add the option -u to only show user processes
▶ Press Q to quit

▶ Simpler alternative: top

Processes, tmux, nano, and our first neural network 7 / 14



demo



Time

▶ Many interesting processes take time
▶ E.g., a week

▶ Exiting the connection terminates all processes
▶ With pure SSH, we would need to keep the connection alive for the entire time – and if our

ISP reconnects our DSL connection, we need to start again

▶ Start our processes such that they continue even if we log off
▶ Needs to be done before starting the process
▶ Various options. Ours: tmux

Processes, tmux, nano, and our first neural network 9 / 14



Time

▶ Many interesting processes take time
▶ E.g., a week

▶ Exiting the connection terminates all processes
▶ With pure SSH, we would need to keep the connection alive for the entire time – and if our

ISP reconnects our DSL connection, we need to start again
▶ Start our processes such that they continue even if we log off

▶ Needs to be done before starting the process
▶ Various options. Ours: tmux

Processes, tmux, nano, and our first neural network 9 / 14



Terminal Multiplexer – tmux

▶ A powerful tool »between ssh and the terminal«
▶ Start a new tmux session: $ tmux

▶ Attach to an existing session: $ tmux at

▶ Detach from a session: ctrl + b d
▶ ctrl + b enters tmux control mode
▶ If we detach, the session continues to run!
▶ And we can re-attach to the session any time and from any where

https://tmuxcheatsheet.com

Processes, tmux, nano, and our first neural network 10 / 14

tmuxcheatsheet.com


Text Editing
▶ We often need to edit plain text files via the command line

▶ E.g. configuration or code
▶ Writing a regular expression and applying sed would work, but is cumbersome

▶ There are multiple plain text editors we can use
▶ vi, emacs, nano, ed, vim, …
▶ Most simple: nano

Nano – Basic Commands
▶ Launch: nano FILENAME

▶ ctrl + x : Exit
▶ ctrl + o : Save (= write out)
▶ ctrl + r : Open (= read file)
▶ Editing: Normal keyboard layout, arrow keys

Processes, tmux, nano, and our first neural network 11 / 14



Text Editing
▶ We often need to edit plain text files via the command line

▶ E.g. configuration or code
▶ Writing a regular expression and applying sed would work, but is cumbersome
▶ There are multiple plain text editors we can use

▶ vi, emacs, nano, ed, vim, …
▶ Most simple: nano

Nano – Basic Commands
▶ Launch: nano FILENAME

▶ ctrl + x : Exit
▶ ctrl + o : Save (= write out)
▶ ctrl + r : Open (= read file)
▶ Editing: Normal keyboard layout, arrow keys

Processes, tmux, nano, and our first neural network 11 / 14



Text Editing
▶ We often need to edit plain text files via the command line

▶ E.g. configuration or code
▶ Writing a regular expression and applying sed would work, but is cumbersome
▶ There are multiple plain text editors we can use

▶ vi, emacs, nano, ed, vim, …
▶ Most simple: nano

Nano – Basic Commands
▶ Launch: nano FILENAME

▶ ctrl + x : Exit
▶ ctrl + o : Save (= write out)
▶ ctrl + r : Open (= read file)
▶ Editing: Normal keyboard layout, arrow keys

Processes, tmux, nano, and our first neural network 11 / 14



demo



Section 1

Exercise



Exercise

Exercise

▶ Launch a tmux session
▶ Copy the file /teaching/summer-2023/sprachverarbeitung/training.py into your

directory (sprachverarbeitung)
▶ Train the model, note down it’s performance
▶ Increase the number of numbers to compare, and let it run again

▶ For this, you’ll need to edit the file training.py
▶ Play around with the other parameters

Processes, tmux, nano, and our first neural network 14 / 14


	Exercise

