## Recap

- Collocations
- Conventionally used word combinations
- Meaning beyond its composition
- Collocation discovery
- Raw frequency: Not helpful, because of Zipf
- Pointwise Mutual Information (PMI)
- Ratio between expected and actual relative frequency


# Inferential Statistics <br> Sprachverarbeitung (VL + Ü) 

Nils Reiter

April 27, 2023

## Literature

Jürgen Bortz/Christof Schuster (2010). Statistik für Humanund Sozialwissenschaftler. 7th ed. Berlin, Heidelberg: Springer<br>Stefan Gries (2009). Quantitative Corpus Linguistics with $R$. Routledge

## Section 1

Introduction

## Inferential Statistics

- Statements about general populations, inferred from a sample
- Hypothesis testing, falsification of the opposite


## Inferential Statistics

- Statements about general populations, inferred from a sample
- Hypothesis testing, falsification of the opposite
- Linguistics:
- Population: Language >in generals
- We may make assumptions about text type, modality, ...
- Sample: Concrete corpus


## Inferential Statistics

- Statements about general populations, inferred from a sample
- Hypothesis testing, falsification of the opposite
- Linguistics:
- Population: Language >in generals
- We may make assumptions about text type, modality, ...
- Sample: Concrete corpus


## Example (»Verwirrter Professor« is a collocation)

- Sample: Wikipedia
- Population: Text that is edited, properly spelled, non-fictional, contemporary, ...
- Satire from the 19 th century $\oslash$
- Post in a gaming forum $\boldsymbol{\square}$
- Article in a newspaper

Section 2

Hypothesis Testing

## Example

## Gries (2009)

- Players $A$ and $B$ toss a coin 100 times
- Heads: $A$ wins / Tails: $B$ wins
- Are they playing fair?



## Example

## Gries (2009)

- Players $A$ and $B$ toss a coin 100 times
- Heads: $A$ wins / Tails: $B$ wins
- Are they playing fair?
- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing


## Example

Gries (2009)

- Players $A$ and $B$ toss a coin 100 times
- Heads: $A$ wins / Tails: $B$ wins
- Are they playing fair?

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses ( $\mathbb{W}_{x}$ : Number of wins for player $X$ )
- $H_{1}$ : A more often than 50 times
expected frequencies of my $A$-wins is higher than that of $B$-wins: $\overparen{W_{A}}>\overparen{W_{B}}$


## Example

## Gries (2009)

- Players $A$ and $B$ toss a coin 100 times
- Heads: $A$ wins / Tails: $B$ wins
- Are they playing fair?

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses ( $W_{X}$ : Number of wins for player $X$ )
- $H_{1}: A$ more often than 50 times expected frequencies of my $A$-wins is higher than that of $B$-wins: $W_{A}>W_{B}$
- $H_{0}: A$ and $B$ win the same number of times expected frequencies of wins are $W_{A}=W_{B}=50$
- »Falsification«: To accept $H_{1}$, we show that $H_{0}$ cannot be true


## Example

## Gries (2009)

- Players $A$ and $B$ toss a coin 100 times
- Heads: $A$ wins / Tails: $B$ wins
- Are they playing fair?
- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses ( $W_{X}$ : Number of wins for player $X$ )
- $H_{1}: A$ more often than 50 times expected frequencies of my $A$-wins is higher than that of $B$-wins: $W_{A}>W_{B}$
- $H_{0}: A$ and $B$ win the same number of times expected frequencies of wins are $W_{A}=W_{B}=50$
- »Falsification«: To accept $H_{1}$, we show that $H_{0}$ cannot be true
" Bernoulli trialin. A sequence of (independent) binary outcomes
- In each toss, the probabilities are the same


## Intuition

- Hypotheses
$H_{0} \quad W_{A}=W_{B}$
$H_{1} \quad W_{A}>W_{B}$
A Not strict opposites - disregard this for the moment
- How often does $A$ need to win, so that we believe they cheat?


## Intuition

- Hypotheses
$H_{0} \quad W_{A}=W_{B}$
$H_{1} \quad W_{A}>W_{B}$
A Not strict opposites - disregard this for the moment
- How often does $A$ need to win, so that we believe they cheat?


## Recipe

- We play the game and observe $W_{A}$ (e.g., 15)
- If the probability that $W_{A}$ takes place gets very small without cheating ( $=$ if $H_{0}$ is true)
- We assume $H_{0}$ and see how probable the observed results are under this assumption


## Intuition

- Hypotheses
$H_{0} \quad W_{A}=W_{B}$
$H_{1} \quad W_{A}>W_{B}$
A Not strict opposites - disregard this for the moment
- How often does $A$ need to win, so that we believe they cheat?


## Recipe

- We play the game and observe $W_{A}$ (e.g., 15)
- If the probability that $W_{A}$ takes place gets very small without cheating ( $=$ if $H_{0}$ is true)
- We assume $H_{0}$ and see how probable the observed results are under this assumption
- »very small«: E.g. 0.05 (= significance level)
- But: Our decision! Conventions: $0.005,0.01,0.05$

How probable are $x$ wins, with three tosses?
$A$ : Kop B: Zahl

| 1 | 2 | 3 | $W_{A}$ | $\omega_{B}$ | $p$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $k$ | $k$ | $k$ | 3 | 0 | $0,125=\frac{1}{8}$ | $p\left(\omega_{A}=3\right)=\frac{1}{8}=0,125$ |
| $k$ | $k$ | $z$ | 2 | 1 | 0,125 | $=\frac{1}{8}$ |
| $k$ | $z$ | $k$ | 2 | 1 | 0,125 | $p\left(\omega_{A}=2\right)=\frac{3}{8}$ |
| $z$ | $k$ | $k$ | 2 | 1 | 0,125 | $p\left(\omega_{A} \geqslant 2\right)=\frac{1}{8}+\frac{3}{8}=\frac{1}{2}=0,5$ |
| $k$ | $z$ | $z$ | 1 | 2 | 0,125 |  |
| $z$ | $k$ | $z$ | 1 | 2 | 0,125 |  |
| $z$ | $z$ | $k$ | 1 | 2 | 0,125 |  |
| $z$ | 7 | $z$ | 0 | 3 | 0,125 |  |
|  |  |  |  |  |  | $p(z) \cdot p(z) \cdot p(7)=0,5^{3}=0,125$ |

How probable are $x$ wins, with three tosses?
Tosses $\quad W_{A} \quad W_{B} \quad \mathrm{p}$

| H | H | H | 3 | 0 | 0.125 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| H | H | T | 2 | 1 | 0.125 |
| H | T | H | 2 | 1 | 0.125 |
| T | H | H | 2 | 1 | 0.125 |
| H | T | T | 1 | 2 | 0.125 |
| T | T | H | 1 | 2 | 0.125 |
| T | H | T | 1 | 2 | 0.125 |
| T | T | T | 0 | 3 | 0.125 |

How probable are $x$ wins, with three tosses?

| Tosses |  |  |  |  | $W_{A}$ |
| :---: | :---: | :---: | :--- | :--- | :---: |
| H | H | H | 3 | 0 | 0.125 |
| H | H | T | 2 | 1 | 0.125 |
| H | T | H | 2 | 1 | 0.125 |
| T | H | H | 2 | 1 | 0.125 |
| H | T | T | 1 | 2 | 0.125 |
| T | T | H | 1 | 2 | 0.125 |
| T | H | T | 1 | 2 | 0.125 |
| T | T | T | 0 | 3 | 0.125 |

$$
\begin{aligned}
& p\left(W_{A}=3\right)=0.125 \\
& p\left(W_{A}=2\right)=
\end{aligned}
$$

How probable are $x$ wins, with three tosses?

| Tosses |  |  |  |  | $W_{A}$ |
| :---: | :---: | :---: | :--- | :--- | :---: |
| H | H | H | 3 | 0 | 0.125 |
| H | H | T | 2 | 1 | 0.125 |
| H | T | H | 2 | 1 | 0.125 |
| T | H | H | 2 | 1 | 0.125 |
| H | T | T | 1 | 2 | 0.125 |
| T | T | H | 1 | 2 | 0.125 |
| T | H | T | 1 | 2 | 0.125 |
| T | T | T | 0 | 3 | 0.125 |

$$
\begin{aligned}
& p\left(W_{A}=3\right)=0.125 \\
& p\left(W_{A}=2\right)=0.125+0.125+0.125=0.375 \\
& p\left(W_{A} \geq 2\right)=
\end{aligned}
$$

How probable are $x$ wins, with three tosses?


How probable are $x$ wins, with ten tosses?


Table: Probabilities for $W_{A} \geq 5$ wins with 10 tosses

Using a fair coin, $p\left(W_{A}: W_{A} \geq 9\right)$ is $0.0097+0.00097=0.01$

How probable are $x$ wins, with 100 tosses?

$W_{A}$ : Wins of A
$p\left(W_{A} \geq 55\right)=p\left(W_{A}=55\right)+p\left(W_{A}=56\right)+\ldots$

$$
=\sum_{i=55}^{100} p\left(W_{A}=i\right)
$$

Table: Probabilities for $50 \leq W_{A} \leq 61$ with 100 tosses

## Interpretation

- Above: Situation under $H_{0}$ (fair coin)


## Interpretation

- Above: Situation under $H_{0}$ (fair coin)
- Interpretation with respect to a concrete situation
- E.g., $A$ has won 55 times: $p\left(W_{A}=55\right)=0.184$
- E.g., $A$ has won 60 times: $p\left(W_{A}=60\right)=0.028$


## Interpretation

- Above: Situation under $H_{0}$ (fair coin)
- Interpretation with respect to a concrete situation
- E.g., $A$ has won 55 times: $p\left(W_{A}=55\right)=0.184$
- E.g., $A$ has won 60 times: $p\left(W_{A}=60\right)=0.028$
- If $p<0.05:$ Reject $H_{0}$, accept $H_{1}$


## Interpretation

- Above: Situation under $H_{0}$ (fair coin)
- Interpretation with respect to a concrete situation
- E.g., $A$ has won 55 times: $p\left(W_{A}=55\right)=0.184$
- E.g., $A$ has won 60 times: $p\left(W_{A}=60\right)=0.028$
- If $p<0.05:$ Reject $H_{0}$, accept $H_{1}$
- How to calculate this probability (= P-value«)
- Statistical tests!


## Binomial Test

- The above: Binomial test
- Binomial distribution $B(n, p)$
- Not (exactly) the same shape as a normal distribution
- $p(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
- Assumptions
- One sample
- Two nominal items
- Sample items are independent of each other



## Section 3

Application to Collocations

## Why at all?

Observations of linguistic expressions (= corpora) exhibit a randomness similar to random variables like in the game above

## Why at all?

Observations of linguistic expressions (= corpora) exhibit a randomness similar to random variables like in the game above

- Some words/word types appear more often than others
- Choice of words is influenced by a huge number of factors (topic, author, style, creativity, ...)


## Collocation Discovery

- Given two words $w_{1}, w_{2}$
- Hypotheses
$H_{0} w_{1}$ and $w_{2}$ are not collocated (i.e., if they appear together, it's by chance)
$H_{1} w_{1}$ and $w_{2}$ form a collocation


## Collocation Discovery

- Given two words $w_{1}, w_{2}$
- Hypotheses
$H_{0} w_{1}$ and $w_{2}$ are not collocated (i.e., if they appear together, it's by chance)
$H_{1} \quad w_{1}$ and $w_{2}$ form a collocation
- Our corpus: A sequence of $n$ bigrams
- Under $H_{0}$, how many of these bigrams are $w_{1} w_{2}$ ?
- Formally: $p\left(w_{1} w_{2}\right)=p\left(w_{1}\right) \times p\left(w_{2}\right)$ ?


## Collocation Discovery

- Given two words $w_{1}, w_{2}$
- Hypotheses
$H_{0} w_{1}$ and $w_{2}$ are not collocated (i.e., if they appear together, it's by chance)
$H_{1} w_{1}$ and $w_{2}$ form a collocation
- Our corpus: A sequence of $n$ bigrams
- Under $H_{0}$, how many of these bigrams are $w_{1} w_{2}$ ?
- Formally: $p\left(w_{1} w_{2}\right)=p\left(w_{1}\right) \times p\left(w_{2}\right)$ ?
- Sequence of bigrams: Bernoulli trial
- Established mathematical framework
- Sequence of $0 / 1$ decisions with associated probability


## Collocation Discovery

- Given two words $w_{1}, w_{2}$
- Hypotheses
$H_{0} w_{1}$ and $w_{2}$ are not collocated (i.e., if they appear together, it's by chance)
$H_{1} w_{1}$ and $w_{2}$ form a collocation
- Our corpus: A sequence of $n$ bigrams
- Under $H_{0}$, how many of these bigrams are $w_{1} w_{2}$ ?
- Formally: $p\left(w_{1} w_{2}\right)=p\left(w_{1}\right) \times p\left(w_{2}\right)$ ?
- Sequence of bigrams: Bernoulli trial
- Established mathematical framework
- Sequence of $0 / 1$ decisions with associated probability
- But: Individual stossesı are not independent A
- We need a different test - it's not a Bernoulli trial!
- Comparison of expected and observed frequencies
- How likely are the observed frequencies if $H_{0}$ (independence) holds?


## $\chi^{2}$-Test

- Comparison of expected and observed frequencies
- How likely are the observed frequencies if $H_{0}$ (independence) holds?
- Steps

1. Decide significance level $5 \%$
2. Extract contingency table from corpus
3. Calculate $\chi^{2}$-value
4. Lookup $\chi^{2}$-value to get to $p$-value

## $\chi^{2}$-Test

- Comparison of expected and observed frequencies
- How likely are the observed frequencies if $H_{0}$ (independence) holds?
- Steps

1. Decide significance level
2. Extract contingency table from corpus
3. Calculate $\chi^{2}$-value
4. Lookup $\chi^{2}$-value to get to $p$-value

|  | $w_{1}=»$ Film $«$ | $w_{1} \neq »$ Film « |
| :--- | :---: | :---: |
| $w_{2}=»$ Festival $«$ | 24 | 701 |
| $w_{2} \neq »$ Festival $«$ | 88 | 1880208 |
| Table: Contingency table $O$ for »Film Festival « |  |  |

$\chi^{2}$-Test<br>Calculate $\chi^{2}$-value

Simplification for $2 \times 2$-matrix

$$
\chi^{2}=\frac{N\left(O_{11} O_{22}-O_{12} O_{21}\right)^{2}}{\left(O_{11}+O_{12}\right)\left(O_{11}+O_{21}\right)\left(O_{12}+O_{22}\right)\left(O_{21}+O_{22}\right)} \quad\left(\begin{array}{c|c}
O_{11} & O_{12} \\
\hline O_{21} & O_{22}
\end{array}\right)
$$

$\chi^{2}$-Test<br>Calculate $\chi^{2}$-value

Simplification for $2 \times 2$-matrix

$$
\chi^{2}=\frac{N\left(O_{11} O_{22}-O_{12} O_{21}\right)^{2}}{\left(O_{11}+O_{12}\right)\left(O_{11}+O_{21}\right)\left(O_{12}+O_{22}\right)\left(O_{21}+O_{22}\right)} \quad\left(\begin{array}{c|c}
O_{11} & O_{12} \\
\hline O_{21} & O_{22}
\end{array}\right)
$$

|  | $w_{1}$ | $\neg w_{1}$ |
| :--- | ---: | ---: |
| $w_{2}$ | 24 | 701 |
| $\neg w_{2}$ | 88 | 1880208 |

## $\chi^{2}$-Test

Calculate $\chi^{2}$-value
Simplification for $2 \times 2$-matrix

$$
\chi^{2}=\frac{N\left(O_{11} O_{22}-O_{12} O_{21}\right)^{2}}{\left(O_{11}+O_{12}\right)\left(O_{11}+O_{21}\right)\left(O_{12}+O_{22}\right)\left(O_{21}+O_{22}\right)} \quad\left(\begin{array}{c|c}
O_{11} & O_{12} \\
\hline O_{21} & O_{22}
\end{array}\right)
$$

|  | $w_{1}$ | $\neg w_{1}$ |
| :--- | ---: | ---: |
| $w_{2}$ | 24 | 701 |
| $\neg w_{2}$ | 88 | 1880208 |

$$
\chi^{2}=\frac{1880232 \times(24 \times 1880208-701 \times 88)^{2}}{(24+701)(24+88)(701+1880208)(88+1880208)}
$$

## $\chi^{2}$-Test

Calculate $\chi^{2}$-value

## Simplification for $2 \times 2$-matrix

$$
\chi^{2}=\frac{N\left(O_{11} O_{22}-O_{12} O_{21}\right)^{2}}{\left(O_{11}+O_{12}\right)\left(O_{11}+O_{21}\right)\left(O_{12}+O_{22}\right)\left(O_{21}+O_{22}\right)} \quad\left(\begin{array}{c|c}
O_{11} & O_{12} \\
\hline O_{21} & O_{22}
\end{array}\right)
$$

|  | $w_{1}$ | $\neg w_{1}$ |
| :--- | ---: | ---: |
| $w_{2}$ | 24 | 701 |
| $\neg w_{2}$ | 88 | 1880208 |

$$
\begin{aligned}
\chi^{2} & =\frac{1880232 \times(24 \times 1880208-701 \times 88)^{2}}{(24+701)(24+88)(701+1880208)(88+1880208)} \\
& =\frac{1880232 \times(45124992-61688)^{2}}{725 \times 112 \times 1880909 \times 1880296} \\
& =\frac{1880232 \times 45063304^{2}}{2.87177252 \times 10^{17}}
\end{aligned}
$$

## $\chi^{2}$-Test

Calculate $\chi^{2}$-value
Simplification for $2 \times 2$-matrix

$$
\chi^{2}=\frac{N\left(O_{11} O_{22}-O_{12} O_{21}\right)^{2}}{\left(O_{11}+O_{12}\right)\left(O_{11}+O_{21}\right)\left(O_{12}+O_{22}\right)\left(O_{21}+O_{22}\right)} \quad\left(\begin{array}{c|c}
O_{11} & O_{12} \\
\hline O_{21} & O_{22}
\end{array}\right)
$$

|  | $w_{1}$ | $\neg w_{1}$ |
| :--- | ---: | ---: |
| $w_{2}$ | 24 | 701 |
| $\neg w_{2}$ | 88 | 1880208 |

$$
\begin{aligned}
\chi^{2} & =\frac{1880232 \times(24 \times 1880208-701 \times 88)^{2}}{(24+701)(24+88)(701+1880208)(88+1880208)} \\
& =\frac{1880232 \times(45124992-61688)^{2}}{725 \times 112 \times 1880909 \times 1880296} \\
& =\frac{1880232 \times 45063304^{2}}{2.87177252 \times 10^{17}} \\
& =\frac{3.81818969 \times 10^{21}}{2.87177252 \times 10^{17}} \\
& =13295.59
\end{aligned}
$$

## $\chi^{2}$-Test

Lookup $\chi^{2}$-value to get to $p$-value

- In reality: Use a library/program to calculate and get $p$-value
- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix(c(24,88,701,1880208), nrow=2)
2 chisq.test(m)
```


## $\chi^{2}$-Test

Lookup $\chi^{2}$-value to get to $p$-value

- In reality: Use a library/program to calculate and get $p$-value
- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)
```

- Java: org.apache.commons.math3.stat.inference.ChiSquareTest


## $\chi^{2}$-Test

Lookup $\chi^{2}$-value to get to $p$-value

- In reality: Use a library/program to calculate and get $p$-value
- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)
```

- Java: org.apache.commons.math3.stat.inference.ChiSquareTest
- Historically
- Computation of $p$-values is complicated
- Collections of »critical values« have been published for different levels of significance
- Critical value for $\alpha=0.05: 3.841$


## $\chi^{2}$-Test

Lookup $\chi^{2}$-value to get to $p$-value

- In reality: Use a library/program to calculate and get $p$-value
- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)
```

- Java: org.apache.commons.math3.stat.inference.ChiSquareTest
- Historically
- Computation of $p$-values is complicated
- Collections of »critical values« have been published for different levels of significance
- Critical value for $\alpha=0.05: 3.841$
- Since $\chi^{2}>3.841$ : reject $H_{0}$ (tables often do not give you exact $p$-values)


## demo

## $\chi^{2}$ vs. Mutual Information

- Both can be applied to collocation discovery
- Tools for different questions
- $\chi^{2}$ : Are these two a collocation?
- PMI: How much information does one word give to the other?


## Interpretation and Pitfalls

- Statistical significance $\neq$ practical significance
- Statistical significance $\neq$ theoretical significance


## Interpretation and Pitfalls

- Statistical significance $\neq$ practical significance
- Statistical significance $\neq$ theoretical significance
- Significance: It's unlikely that the outcomes were achieved under $H_{0}$
- Important questions:
- Are $H_{0}$ and $H_{1}$ really opposites?
- Is $H_{1}$ really what I want to show?
- What's the ıpopulations?
- Is the sample representative of it?
- Practice of ) pushing ( the p-value below 5\%
- Consequence of publication preferences by journals and conferences


## p-Hacking

- Practice of ) pushing ( the p-value below 5\%
- Consequence of publication preferences by journals and conferences
- Reminder: We allow for $5 \%$ error probability!
- If we do 100 significance tests, 5 of them will have false results


## Summary

Inferential statistics

- Hypothesis testing
- We have made some observations
- How probably are the observations we have seen under different assumptions?
- If the result is very unlikely under one assumption, the other must be true
- Not an idiot-proof tool though - think when interpreting results


## Summary

Inferential statistics

- Hypothesis testing
- We have made some observations
- How probably are the observations we have seen under different assumptions?
- If the result is very unlikely under one assumption, the other must be true
- Not an idiot-proof tool though - think when interpreting results

Next: Language Modelling

- Predict the next word, given some history
- It's what your phone does every day!


## References I

囯 Bortz, Jürgen/Christof Schuster (2010). Statistik für Human- und Sozialwissenschaftler. 7th ed. Berlin, Heidelberg: Springer.
( Gries, Stefan (2009). Quantitative Corpus Linguistics with R. Routledge.

