
Recap

I Collocations
I Conventionally used word combinations
I Meaning beyond its composition

I Collocation discovery
I Raw frequency: Not helpful, because of Zipf
I Pointwise Mutual Information (PMI)

I Ratio between expected and actual relative frequency
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Section 1

Introduction



Introduction

Inferential Statistics
I Statements about general populations, inferred from a sample
I Hypothesis testing, falsification of the opposite

I Linguistics:
I Population: Language ›in general‹

I We may make assumptions about text type, modality, …
I Sample: Concrete corpus

Example (»Verwirrter Professor« is a collocation)

I Sample: Wikipedia
I Population: Text that is edited, properly spelled, non-fictional, contemporary, …

I Satire from the 19th century �

I Post in a gaming forum �

I Article in a newspaper �
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Hypothesis Testing

Example
Gries (2009)

I Players A and B toss a coin 100 times
I Heads: A wins / Tails: B wins

I Are they playing fair?

I Which results make you suspicious and lets you belief someone cheated?
I This is the core goal of hypothesis testing

I Hypotheses (WX : Number of wins for player X)
I H1: A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: WA > WB
I H0: A and B win the same number of times

expected frequencies of wins are WA = WB = 50
I »Falsification«: To accept H1, we show that H0 cannot be true

I »Bernoulli trial«: A sequence of (independent) binary outcomes
I In each toss, the probabilities are the same

Session 4 7 / 26



Hypothesis Testing

Example
Gries (2009)

I Players A and B toss a coin 100 times
I Heads: A wins / Tails: B wins

I Are they playing fair?
I Which results make you suspicious and lets you belief someone cheated?
I This is the core goal of hypothesis testing

I Hypotheses (WX : Number of wins for player X)
I H1: A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: WA > WB
I H0: A and B win the same number of times

expected frequencies of wins are WA = WB = 50
I »Falsification«: To accept H1, we show that H0 cannot be true

I »Bernoulli trial«: A sequence of (independent) binary outcomes
I In each toss, the probabilities are the same

Session 4 7 / 26



Hypothesis Testing

Example
Gries (2009)

I Players A and B toss a coin 100 times
I Heads: A wins / Tails: B wins

I Are they playing fair?
I Which results make you suspicious and lets you belief someone cheated?
I This is the core goal of hypothesis testing

I Hypotheses (WX : Number of wins for player X)
I H1: A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: WA > WB

I H0: A and B win the same number of times
expected frequencies of wins are WA = WB = 50

I »Falsification«: To accept H1, we show that H0 cannot be true
I »Bernoulli trial«: A sequence of (independent) binary outcomes

I In each toss, the probabilities are the same

Session 4 7 / 26

Nils Reiter



Hypothesis Testing

Example
Gries (2009)

I Players A and B toss a coin 100 times
I Heads: A wins / Tails: B wins

I Are they playing fair?
I Which results make you suspicious and lets you belief someone cheated?
I This is the core goal of hypothesis testing

I Hypotheses (WX : Number of wins for player X)
I H1: A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: WA > WB
I H0: A and B win the same number of times

expected frequencies of wins are WA = WB = 50
I »Falsification«: To accept H1, we show that H0 cannot be true

I »Bernoulli trial«: A sequence of (independent) binary outcomes
I In each toss, the probabilities are the same

Session 4 7 / 26



Hypothesis Testing

Example
Gries (2009)

I Players A and B toss a coin 100 times
I Heads: A wins / Tails: B wins

I Are they playing fair?
I Which results make you suspicious and lets you belief someone cheated?
I This is the core goal of hypothesis testing

I Hypotheses (WX : Number of wins for player X)
I H1: A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: WA > WB
I H0: A and B win the same number of times

expected frequencies of wins are WA = WB = 50
I »Falsification«: To accept H1, we show that H0 cannot be true

I »Bernoulli trial«: A sequence of (independent) binary outcomes
I In each toss, the probabilities are the same

Session 4 7 / 26

Nils Reiter



Hypothesis Testing

Intuition

I Hypotheses
H0 WA = WB
H1 WA > WB
� Not strict opposites – disregard this for the moment

I How often does A need to win, so that we believe they cheat?

Recipe

I We play the game and observe WA (e.g., 15)
I If the probability that WA takes place gets very small without cheating (= if H0 is true)

I We assume H0 and see how probable the observed results are under this assumption
I »very small«: E.g., 0.05 (= significance level)
I But: Our decision! Conventions: 0.005, 0.01, 0.05
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How probable are x wins, with three tosses?
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Hypothesis Testing

How probable are x wins, with three tosses?
Tosses WA WB p

H H H 3 0 0.125
H H T 2 1 0.125
H T H 2 1 0.125
T H H 2 1 0.125
H T T 1 2 0.125
T T H 1 2 0.125
T H T 1 2 0.125
T T T 0 3 0.125

p(WA = 3) = 0.125

p(WA = 2) = 0.125 + 0.125 + 0.125 = 0.375

p(WA ≥ 2) = p(WA = 2) + p(WA = 3) = 0.5
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Hypothesis Testing

How probable are x wins, with ten tosses?

0 1 2 3 4 5 6 7 8 9 10

WA: Wins of A

Pr
ob
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ty

0.0

0.1

0.2

0.3

0.4

0.5
WA WB P

5 5 0.246
6 4 0.205
7 3 0.117
8 2 0.043
9 1 0.0097

10 0 0.000 97

Table: Probabilities for WA ≥ 5 wins with 10
tosses

Using a fair coin, p(WA ≥ 9) is 0.0097 + 0.000 97 = 0.01
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Hypothesis Testing

How probable are x wins, with 100 tosses?

0 7 15 24 33 42 51 60 69 78 87 96

WA: Wins of A

Pr
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0.00

0.02

0.04
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0.08

0.10

0.12

0.14

p(WA ≥ 55) = p(WA = 55) + p(WA = 56) + . . .

=

100∑
i=55

p(WA = i)

WA P

50 0.080
51 0.078
52 0.074
53 0.067
54 0.058

55 0.048
56 0.039
57 0.030
58 0.022
59 0.016

60 0.011
61 0.007

Table: Probabilities for 50 ≤ WA ≤ 61 with 100
tosses
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Hypothesis Testing

Interpretation

I Above: Situation under H0 (fair coin)

I Interpretation with respect to a concrete situation
I E.g., A has won 55 times: p(WA = 55) = 0.184
I E.g., A has won 60 times: p(WA = 60) = 0.028

I If p < 0.05: Reject H0, accept H1

I How to calculate this probability (= »p-value«)
I Statistical tests!
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Hypothesis Testing

Binomial Test

I The above: Binomial test
I Binomial distribution B(n, p)

I Not (exactly) the same shape as
a normal distribution

I p(X = k) =
(n

k
)
pk(1− p)n−k

I Assumptions
I One sample
I Two nominal items
I Sample items are independent of each other
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Section 3

Application to Collocations



Application to Collocations

Why at all?
Observations of linguistic expressions (= corpora) exhibit a randomness similar to random
variables like in the game above

I Some words/word types appear more often than others
I Choice of words is influenced by a huge number of factors

(topic, author, style, creativity, …)
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Application to Collocations

Collocation Discovery

I Given two words w1,w2

I Hypotheses
H0 w1 and w2 are not collocated (i.e., if they appear together, it’s by chance)
H1 w1 and w2 form a collocation

I Our corpus: A sequence of n bigrams
I Under H0, how many of these bigrams are w1w2?

I Formally: p(w1w2) = p(w1)× p(w2) ?
I Sequence of bigrams: Bernoulli trial

I Established mathematical framework
I Sequence of 0/1 decisions with associated probability
I But: Individual ›tosses‹ are not independent �

I We need a different test – it’s not a Bernoulli trial!
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Application to Collocations

χ2-Test
I Comparison of expected and observed frequencies
I How likely are the observed frequencies if H0 (independence) holds?

I Steps
1. Decide significance level
2. Extract contingency table from corpus
3. Calculate χ2-value
4. Lookup χ2-value to get to p-value

w1 = »Film« w1 6= »Film«

w2 = »Festival« 24 701
w2 6= »Festival« 88 1 880 208

Table: Contingency table O for »Film Festival«
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Application to Collocations

χ2-Test
Calculate χ2-value

Simplification for 2x2-matrix

χ2 =
N (O11O22 − O12O21)

2

(O11 + O12)(O11 + O21)(O12 + O22)(O21 + O22)

(
O11 O12

O21 O22

)

w1 ¬w1

w2 24 701
¬w2 88 1 880 208

χ2 =
1880232× (24× 1880208− 701× 88)2

(24 + 701)(24 + 88)(701 + 1880208)(88 + 1880208)

=
1880232× (45124992− 61688)2

725× 112× 1880909× 1880296

=
1880232× 450633042

2.871 772 52× 1017

=
3.818 189 69× 1021

2.871 772 52× 1017

= 13 295.59
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Application to Collocations

χ2-Test
Lookup χ2-value to get to p-value
I In reality: Use a library/program to calculate and get p-value

I Python: scipy.stats.chi2
I R: chisq.test

1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)

I Java: org.apache.commons.math3.stat.inference.ChiSquareTest
I …

I Historically
I Computation of p-values is complicated
I Collections of »critical values« have been published for different levels of significance

I Critical value for α = 0.05: 3.841

I Since χ2 > 3.841: reject H0

(tables often do not give you exact p-values)
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Application to Collocations

χ2 vs. Mutual Information

I Both can be applied to collocation discovery
I Tools for different questions

I χ2: Are these two a collocation?
I PMI: How much information does one word give to the other?

Session 4 22 / 26



Summary

Interpretation and Pitfalls

I Statistical significance 6= practical significance
I Statistical significance 6= theoretical significance

I Significance: It’s unlikely that the outcomes were achieved under H0

I Important questions:
I Are H0 and H1 really opposites?
I Is H1 really what I want to show?
I What’s the ›population‹?
I Is the sample representative of it?
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Summary

p-Hacking

I Practice of ›pushing‹ the p-value below 5%
I Consequence of publication preferences by journals and conferences

I Reminder: We allow for 5% error probability!
I If we do 100 significance tests, 5 of them will have false results
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Summary

Summary

Inferential statistics
I Hypothesis testing

I We have made some observations
I How probably are the observations we have seen under different assumptions?
I If the result is very unlikely under one assumption, the other must be true

I Not an idiot-proof tool though – think when interpreting results

Next: Language Modelling
I Predict the next word, given some history
I It’s what your phone does every day!

Session 4 25 / 26



Summary

Summary

Inferential statistics
I Hypothesis testing

I We have made some observations
I How probably are the observations we have seen under different assumptions?
I If the result is very unlikely under one assumption, the other must be true

I Not an idiot-proof tool though – think when interpreting results
Next: Language Modelling
I Predict the next word, given some history
I It’s what your phone does every day!

Session 4 25 / 26



References I

Bortz, Jürgen/Christof Schuster (2010). Statistik für Human- und Sozialwissenschaftler.
7th ed. Berlin, Heidelberg: Springer.
Gries, Stefan (2009). Quantitative Corpus Linguistics with R. Routledge.

Session 4 26 / 26


	Introduction
	Hypothesis Testing
	Application to Collocations
	Summary
	Appendix
	References


