Recap

- Collocations
 - Conventionally used word combinations
 - Meaning beyond its composition
- Collocation discovery
 - Raw frequency: Not helpful, because of Zipf
 - Pointwise Mutual Information (PMI)
 - Ratio between expected and actual relative frequency

Inferential Statistics Sprachverarbeitung (VL + \ddot{U})

Nils Reiter

April 27, 2023

Literature

Abgeprofer Christif Gruter Statistik För Norman- und Sankahrissenschafter 7., velhtändig überschaftet and erestetter Auflage Mit 11. Mäddagen ere 10. Nation

Seringer

CUNTIATIVE COCKES DESCRIPTION Jürgen Bortz/Christof Schuster (2010). *Statistik für Human-und Sozialwissenschaftler*. 7th ed. Berlin, Heidelberg: Springer

Stefan Gries (2009). *Quantitative Corpus Linguistics with R*. Routledge

Section 1

Introduction

Introduction

Inferential Statistics

- Statements about general populations, *inferred* from a sample
- Hypothesis testing, falsification of the opposite

Introduction

Inferential Statistics

- Statements about general populations, *inferred* from a sample
- Hypothesis testing, falsification of the opposite
- Linguistics:
 - Population: Language >in general
 - We may make assumptions about text type, modality, ...
 - Sample: Concrete corpus

Introduction

Inferential Statistics

- Statements about general populations, *inferred* from a sample
- Hypothesis testing, falsification of the opposite
- Linguistics:
 - Population: Language >in general
 - We may make assumptions about text type, modality, ...
 - Sample: Concrete corpus

Example (»Verwirrter Professor« is a collocation)

- Sample: Wikipedia
- ▶ Population: Text that is edited, properly spelled, non-fictional, contemporary, ...
 - ► Satire from the 19th century ⊘
 - ► Post in a gaming forum Ø
 - Article in a newspaper

Section 2

Hypothesis Testing

Example Gries (2009)

- ▶ Players A and B toss a coin 100 times
 - Heads: A wins / Tails: B wins
- Are they playing fair?

Gries (2009)

- \blacktriangleright Players A and B toss a coin 100 times
 - \blacktriangleright Heads: A wins / Tails: B wins
- Are they playing fair?

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing

Gries (2009)

- \blacktriangleright Players A and B toss a coin 100 times
 - Heads: A wins / Tails: B wins
- Are they playing fair?

 (W_B)

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses (W_X : Number of wins for player X)
 - H_1 : A more often than 50 times

expected frequencies of my A-wins is higher than that of B-wins: M_A

Gries (2009)

- \blacktriangleright Players A and B toss a coin 100 times
 - Heads: A wins / Tails: B wins
- Are they playing fair?

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses (W_X : Number of wins for player X)
 - ► H₁: A more often than 50 times expected frequencies of my A-wins is higher than that of B-wins: W_A > W_B
 - ► H₀: A and B win the same number of times expected frequencies of wins are W_A = W_B = 50
 - ▶ »Falsification «: To accept H_1 , we show that H_0 cannot be true

Gries (2009)

- \blacktriangleright Players A and B toss a coin 100 times
 - Heads: A wins / Tails: B wins
- Are they playing fair?

- Which results make you suspicious and lets you belief someone cheated?
- This is the core goal of hypothesis testing
- Hypotheses (W_X : Number of wins for player X)
 - ► H₁: A more often than 50 times expected frequencies of my A-wins is higher than that of B-wins: W_A > W_B
 - ► H₀: A and B win the same number of times expected frequencies of wins are W_A = W_B = 50
 - ▶ »Falsification «: To accept H_1 , we show that H_0 cannot be true

► »Bernoulli trial A sequence of (independent) binary outcomes

In each toss, the probabilities are the same

Intuition

Hypotheses

- $\begin{array}{l} H_0 \quad W_A = W_B \\ H_1 \quad W_A > W_B \\ \hline & \\ & \\ \end{array} \mbox{ Not strict opposites disregard this for the moment } \end{array}$
- How often does A need to win, so that we believe they cheat?

Intuition

Hypotheses

- $\begin{array}{l} H_0 \quad W_A = W_B \\ H_1 \quad W_A > W_B \\ \hline & \\ & \\ \end{array} \mbox{ Not strict opposites disregard this for the moment } \end{array}$
- How often does A need to win, so that we believe they cheat?

Recipe

- We play the game and observe W_A (e.g., 15)
- ▶ If the probability that W_A takes place gets very small without cheating (= if H_0 is true)
 - We assume H_0 and see how probable the observed results are under this assumption

Intuition

Hypotheses

- $\begin{array}{l} H_0 \quad W_A = W_B \\ H_1 \quad W_A > W_B \\ \hline & \\ & \\ \end{array} \mbox{ Not strict opposites disregard this for the moment } \end{array}$
- How often does A need to win, so that we believe they cheat?

Recipe

- We play the game and observe W_A (e.g., 15)
- ▶ If the probability that W_A takes place gets very small without cheating (= if H_0 is true)
 - \blacktriangleright We assume H_0 and see how probable the observed results are under this assumption
 - > »very small«: E.g. 0.05 (= significance level)
 - But: Our decision! Conventions: 0.005, 0.01, 0.05

How probable are x wins, with three tosses? A: Kopt B: Zahl 3 WA WB $P(W_{A}=3)=\frac{1}{8}=0.125$ 0 0,125 = 73 3 K K 0,125 = 78 2 1 KI 7 K $P(\omega_{A}=2)=\frac{3}{3}$ 2 1 01125 K K 7 7 N X 0,125 P(WAZ2)= = + = = = 0,5 2 0, 125 К 1 7 7 £ 2 0, 125 2 V £ 2 3 7 2 1 0, 125 7 3 2 0, 125 $p(7) \cdot p(7) \cdot p(7) = 0, s^{2} = 0, 125$

How probable are x wins, with three tosses?

٦	Tosses		W_A	W_B	р
Н	Н	Н	3	0	0.125
Н	Н	Т	2	1	0.125
Н	Т	Н	2	1	0.125
Т	Н	Н	2	1	0.125
Н	Т	Т	1	2	0.125
Т	Т	Н	1	2	0.125
Т	Н	Т	1	2	0.125
Т	Т	Т	0	3	0.125

How probable are x wins, with three tosses?

٦	osse	S	W_A	W_B	р
Н	Н	Н	3	0	0.125
Н	Н	Т	2	1	0.125
Н	Т	Н	2	1	0.125
Т	Н	Н	2	1	0.125
Н	Т	Т	1	2	0.125
Т	Т	Н	1	2	0.125
Т	Н	Т	1	2	0.125
Т	Т	Т	0	3	0.125

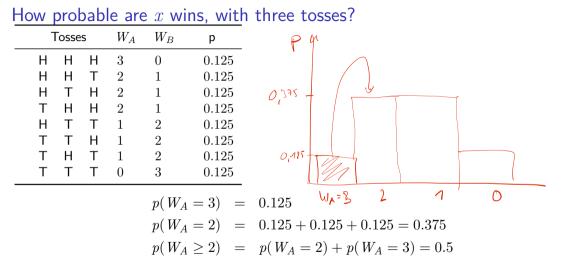
$$p(W_A = 3) = 0.125$$

 $p(W_A = 2) =$

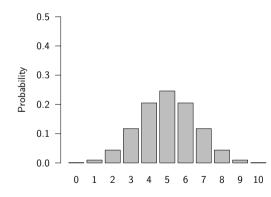
How probable are x wins, with three tosses?

٦	Tosses		W_A	W_B	р
Н	Н	Н	3	0	0.125
Н	Н	Т	2	1	0.125
Н	Т	Н	2	1	0.125
Т	Н	Н	2	1	0.125
Н	Т	Т	1	2	0.125
Т	Т	Н	1	2	0.125
Т	Н	Т	1	2	0.125
Т	Т	Т	0	3	0.125

$$\begin{array}{lll} p(W_A=3) &=& 0.125 \\ p(W_A=2) &=& 0.125 + 0.125 + 0.125 = 0.375 \\ p(W_A\geq 2) &=& \end{array}$$



How probable are x wins, with ten tosses?

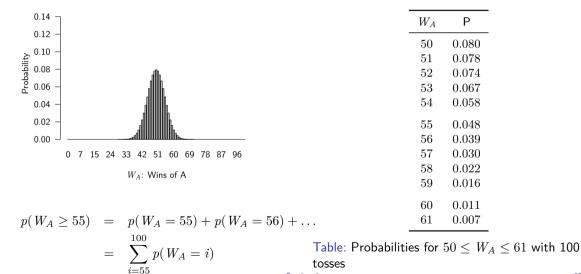


W_A	W_B	Р
5	5	0.246
6	4	0.205
7	3	0.117
8	2	0.043
9	1	0.0097
10	0	0.00097

Table: Probabilities for $W_A \ge 5$ wins with 10 tosses

Using a fair coin, $p(\frac{W_A: \mbox{ Wins of A}}{V_A \geq 9})$ is $0.0097 + 0.000\,97 = 0.01$

How probable are x wins, with 100 tosses?



Session 4

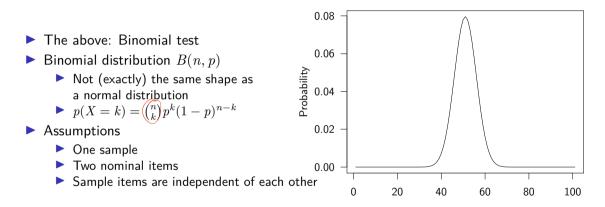
▶ Above: Situation under H_0 (fair coin)

- ► Above: Situation under *H*⁰ (fair coin)
- Interpretation with respect to a concrete situation
 - E.g., A has won 55 times: $p(W_A = 55) = 0.184$
 - E.g., A has won 60 times: $p(W_A = 60) = 0.028$

- ► Above: Situation under *H*⁰ (fair coin)
- Interpretation with respect to a concrete situation
 - E.g., A has won 55 times: $p(W_A = 55) = 0.184$
 - E.g., A has won 60 times: $p(W_A = 60) = 0.028$
- ▶ If p < 0.05: Reject H_0 , accept H_1

- ► Above: Situation under *H*⁰ (fair coin)
- Interpretation with respect to a concrete situation
 - E.g., A has won 55 times: $p(W_A = 55) = 0.184$
 - E.g., A has won 60 times: $p(W_A = 60) = 0.028$
- ▶ If p < 0.05: Reject H_0 , accept H_1
- How to calculate this probability (= »p value«)
 - Statistical tests!

Binomial Test



Section 3

Application to Collocations

Application to Collocations

Why at all?

Observations of linguistic expressions (= corpora) exhibit a randomness similar to random variables like in the game above

Application to Collocations

Why at all?

Observations of linguistic expressions (= corpora) exhibit a randomness similar to random variables like in the game above

- Some words/word types appear more often than others
- Choice of words is influenced by a huge number of factors (topic, author, style, creativity, ...)

- Given two words w_1, w_2
- Hypotheses

 H_0 w_1 and w_2 are not collocated (i.e., if they appear together, it's by chance)

 $H_1 \hspace{0.1in} w_1 \hspace{0.1in}$ and $\hspace{0.1in} w_2 \hspace{0.1in}$ form a collocation

- Given two words w_1, w_2
- Hypotheses

 $H_0 \ w_1$ and w_2 are not collocated (i.e., if they appear together, it's by chance)

- H_1 w_1 and w_2 form a collocation
- \blacktriangleright Our corpus: A sequence of n bigrams
 - Under H_0 , how many of these bigrams are $w_1 w_2$?
 - Formally: $p(w_1w_2) = p(w_1) \times p(w_2)$?

- Given two words w_1, w_2
- Hypotheses

 H_0 w_1 and w_2 are not collocated (i.e., if they appear together, it's by chance)

- H_1 w_1 and w_2 form a collocation
- \blacktriangleright Our corpus: A sequence of n bigrams
 - Under H_0 , how many of these bigrams are w_1w_2 ?
 - Formally: $p(w_1w_2) = p(w_1) \times p(w_2)$?
- Sequence of bigrams: Bernoulli trial
 - Established mathematical framework
 - Sequence of 0/1 decisions with associated probability

- Given two words w_1, w_2
- Hypotheses

 H_0 w_1 and w_2 are not collocated (i.e., if they appear together, it's by chance)

- H_1 w_1 and w_2 form a collocation
- \blacktriangleright Our corpus: A sequence of n bigrams
 - Under H_0 , how many of these bigrams are w_1w_2 ?
 - Formally: $p(w_1w_2) = p(w_1) \times p(w_2)$?
- Sequence of bigrams: Bernoulli trial
 - Established mathematical framework
 - Sequence of 0/1 decisions with associated probability
 - But: Individual >tosses< are not independent A</p>
- We need a different test it's not a Bernoulli trial!

 χ^2 -Test

- Comparison of expected and observed frequencies
- How likely are the observed frequencies if H_0 (independence) holds?

$\chi^2 ext{-Test}$

- Comparison of expected and observed frequencies
- How likely are the observed frequencies if H_0 (independence) holds?
- Steps
 - 1. Decide significance level \mathbf{S}' .
 - 2. Extract contingency table from corpus
 - 3. Calculate χ^2 -value
 - 4. Lookup χ^2 -value to get to *p*-value

$\chi^2 ext{-Test}$

- Comparison of expected and observed frequencies
- How likely are the observed frequencies if H_0 (independence) holds?
- Steps
 - 1. Decide significance level
 - 2. Extract contingency table from corpus
 - 3. Calculate χ^2 -value
 - 4. Lookup χ^2 -value to get to *p*-value

	$w_1 = *Film*$	$w_1 eq {\sf *Film}{\sf *}$
$w_2 = $ »Festival«	24	701
$w_2 eq$ »Festival«	88	1880208

Table: Contingency table O for »Film Festival«

 $\begin{array}{l} \chi^2 \text{-} \text{Test} \\ \text{Calculate } \chi^2 \text{-} \text{value} \end{array}$

$$\chi^{2} = \frac{N(O_{11}O_{22} - O_{12}O_{21})^{2}}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})} \qquad \left(\begin{array}{c|c} O_{11} & O_{12} \\ \hline O_{21} & O_{22} \end{array}\right)$$

 $\begin{array}{l} \chi^2 \text{-} \text{Test} \\ \text{Calculate } \chi^2 \text{-} \text{value} \end{array}$

$$\chi^{2} = \frac{N(O_{11}O_{22} - O_{12}O_{21})^{2}}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})} \qquad \left(\begin{array}{c|c} O_{11} & O_{12} \\ \hline O_{21} & O_{22} \end{array}\right)$$

	w_1	$\neg w_1$
w_2	24	701
$\neg w_2$	88	1880208

 $\begin{array}{l} \chi^2 \text{-} \mathsf{Test} \\ \text{Calculate } \chi^2 \text{-value} \end{array}$

$$\chi^{2} = \frac{N(O_{11}O_{22} - O_{12}O_{21})^{2}}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})} \qquad \left(\begin{array}{c|c} O_{11} & O_{12} \\ \hline O_{21} & O_{22} \end{array}\right)$$

$$\chi^2 = \frac{1880232 \times (24 \times 1880208 - 701 \times 88)^2}{(24 + 701)(24 + 88)(701 + 1880208)(88 + 1880208)}$$

	w_1	$\neg w_1$
w_2	24	701
$\neg w_2$	88	1880208

 $\begin{array}{l} \chi^2 \text{-} \text{Test} \\ \text{Calculate } \chi^2 \text{-} \text{value} \end{array}$

$$\chi^{2} = \frac{N(O_{11}O_{22} - O_{12}O_{21})^{2}}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})} \qquad \left(\begin{array}{c|c} O_{11} & O_{12} \\ \hline O_{21} & O_{22} \end{array}\right)$$

	w_1	$\neg w_1$
w_2	24	701
$\neg w_2$	88	1880208

χ^2	=	$1880232 \times (24 \times 1880208 - 701 \times 88)^2$
		(24+701)(24+88)(701+1880208)(88+1880208)
	_	$1880232 \times (45124992 - 61688)^2$
	=	$725 \times 112 \times 1880909 \times 1880296$
$-1880232 \times 45063304^{2}$		$1880232 \times 45063304^2$
	_	$2.87177252 imes 10^{17}$

 $\begin{array}{l} \chi^2 \text{-} \mathsf{Test} \\ \text{Calculate } \chi^2 \text{-value} \end{array}$

$$\chi^{2} = \frac{N(O_{11}O_{22} - O_{12}O_{21})^{2}}{(O_{11} + O_{12})(O_{11} + O_{21})(O_{12} + O_{22})(O_{21} + O_{22})} \qquad \left(\begin{array}{c|c} O_{11} & O_{12} \\ \hline O_{21} & O_{22} \end{array}\right)$$

	w_1	$\neg w_1$
w_2	24	701
$\neg w_2$	88	1880208

χ^2	_	$1880232 \times (24 \times 1880208 - 701 \times 88)^2$		
	=	$\overline{(24+701)(24+88)(701+1880208)(88+1880208)}$		
_	_	$1880232 \times (45124992 - 61688)^2$		
	_	725 imes 112 imes 1880909 imes 1880296		
		$1880232 \times 45063304^2$		
=	=	2.87177252×10^{17}		
=	3.81818969×10^{21}			
	$\overline{2.87177252 \times 10^{17}}$			
	=	13 295.59		

$\chi^2 \text{-} \mathsf{Test}$ Lookup $\chi^2 \text{-} \mathsf{value}$ to get to $p\text{-} \mathsf{value}$

- ▶ In reality: Use a library/program to calculate and get *p*-value
 - Python: scipy.stats.chi2
 - R: chisq.test

```
1 m <- matrix(<u>c(24,88,701,1880208)</u>), nrow=2)
2 chisq.test(m)
```

$\chi^2 \text{-} \mathsf{Test}$ Lookup $\chi^2 \text{-} \mathsf{value}$ to get to $p\text{-} \mathsf{value}$

▶ In reality: Use a library/program to calculate and get *p*-value

- Python: scipy.stats.chi2
- R: chisq.test

...

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)</pre>
```

Java: org.apache.commons.math3.stat.inference.ChiSquareTest

$\chi^2 \text{-} \mathsf{Test}$ Lookup $\chi^2 \text{-} \mathsf{value}$ to get to $p\text{-} \mathsf{value}$

▶ In reality: Use a library/program to calculate and get *p*-value

- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)</pre>
```

Java: org.apache.commons.math3.stat.inference.ChiSquareTest
 ...

Historically

- Computation of *p*-values is complicated
- Collections of »critical values« have been published for different levels of significance
 - Critical value for $\alpha = 0.05$: 3.841

$\chi^2 \text{-} \mathsf{Test}$ Lookup $\chi^2 \text{-} \mathsf{value}$ to get to $p \text{-} \mathsf{value}$

▶ In reality: Use a library/program to calculate and get *p*-value

- Python: scipy.stats.chi2
- R: chisq.test

```
1 m <- matrix( c(24,88,701,1880208), nrow=2)
2 chisq.test(m)</pre>
```

Java: org.apache.commons.math3.stat.inference.ChiSquareTest
 ...

Historically

- Computation of *p*-values is complicated
- Collections of »critical values« have been published for different levels of significance
 - Critical value for $\alpha = 0.05$: 3.841
- Since χ² > 3.841: reject H₀ (tables often do not give you exact *p*-values)

demo

χ^2 vs. Mutual Information

- Both can be applied to collocation discovery
- Tools for different questions
 - χ^2 : Are these two a collocation?
 - PMI: How much information does one word give to the other?

Interpretation and Pitfalls

- Statistical significance \neq practical significance
- Statistical significance \neq theoretical significance

Interpretation and Pitfalls

- Statistical significance \neq practical significance
- Statistical significance \neq theoretical significance
- \blacktriangleright Significance: It's unlikely that the outcomes were achieved under H_0

Important questions:

- Are H_0 and H_1 really opposites?
- ls H_1 really what I want to show?
- What's the >population <?</p>
- Is the sample representative of it?

p-Hacking

- Practice of)pushing(the p-value below 5%)
- Consequence of publication preferences by journals and conferences

p-Hacking

- Practice of >pushing< the p-value below 5%</p>
- Consequence of publication preferences by journals and conferences
- ▶ Reminder: We allow for 5% error probability!
- ▶ If we do 100 significance tests, 5 of them will have false results

Summary

Inferential statistics

- Hypothesis testing
 - We have made some observations
 - How probably are the observations we have seen under different assumptions?
 - ▶ If the result is very unlikely under one assumption, the other must be true
- Not an idiot-proof tool though think when interpreting results

Summary

Inferential statistics

- Hypothesis testing
 - We have made some observations
 - How probably are the observations we have seen under different assumptions?
 - If the result is very unlikely under one assumption, the other must be true
- ▶ Not an idiot-proof tool though think when interpreting results

Next: Language Modelling

- Predict the next word, given some history
- It's what your phone does every day!

- Bortz, Jürgen/Christof Schuster (2010). *Statistik für Human- und Sozialwissenschaftler*. 7th ed. Berlin, Heidelberg: Springer.
- Gries, Stefan (2009). Quantitative Corpus Linguistics with R. Routledge.