Recap

Last Tuesday

- Machine Learning Experiment
- Convert data set into correct format
- Run machine learning workflow
 - weka.classifiers.Evaluation
 - weka.classifiers.bayes.NaiveBayes

Lehrevaluation

- Antworten einsehbar in Ilias
- Vielen Dank für die Blumen Ausgehänden

Lehrevaluation

- Antworten einsehbar in Ilias
- Vielen Dank für die Blumen Ausgehährt
- Wichtigste Punkte aus Kommentaren
 - Tempo der Veranstaltung
 - Verhältnis Übungen und Klausur, Inhalt der Übungen
 - Vorlesungsmodus

Lehrevaluation

- Antworten einsehbar in Ilias
- Vielen Dank für die Blumen Ausgehährt
- Wichtigste Punkte aus Kommentaren
 - Tempo der Veranstaltung
 - Verhältnis Übungen und Klausur, Inhalt der Übungen
 - Vorlesungsmodus
- Weitere Fragen oder Anmerkungen?

Naive Bayes Sprachverarbeitung (VL + \ddot{U})

Nils Reiter

May 23, 2023

Recap: Probabilities

- Probability: Ratio of events of interest to all possible events (within event space)
- Joint probability: Two events take place simultaneously
- Conditional probability: One event takes place under the assumption that another event took place

Can be calculated from joint and individual probabilities: $p(A|B) = \frac{p(A,B)}{p(B)}$

Dependent and independent events

Relation between hair color H and preferred wake-up time W^1

$\downarrow ~W~/~H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

¹All numbers are made up.

Example

Relation between hair color H and preferred wake-up time W^1

$\downarrow ~W~/~H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	6	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

If we pick a random person, what's the probability that this person has brown hair?

$$p(H = brown) =?$$

¹All numbers are made up.

Example

Relation between hair color H and preferred wake-up time W^1

$\downarrow ~W~/~H \rightarrow$	brown	red	sum
early late	20 <mark>30</mark>	10 5	30 35
sum	50	15 -	

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

$$\begin{array}{l} p(H = \mathsf{brown}) = \frac{50}{65} \quad p(H = \mathsf{red}) = \frac{15}{65} \\ p(W = \mathsf{early}) = \frac{30}{65} \quad p(W = \mathsf{late}) = \frac{35}{65} \end{array} \right\} \mathsf{sums \ per \ row \ or \ column}$$

¹All numbers are made up.

Example

Relation between hair color H and preferred wake-up time W^1

$\downarrow ~W~/~H \rightarrow$	brown	red	sum
early	20	10	30
late	<u> </u>	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$

Probability that someone has brown hair and prefers to wake up late

Denominator: Number of all items

¹All numbers are made up.

Example

Relation between hair color H and preferred wake-up time W^1

$\downarrow ~W~/~H \rightarrow$	brown	red	sum
early late	20	10 5	30 35
sum	<u></u>	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

- Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$
 - Probability that someone has brown hair and prefers to wake up late
 - Denominator: Number of all items
- Conditional probability: $p(W = \text{late}|H = \text{brown}) = \frac{B0}{50}$
 - Probability that one of the brown-haired participants prefers to wake up late
 - Denominator: Number of remaining items (after conditioned event has happened)

¹All numbers are made up.

Example

	brown	re	d margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.1 p(W = l, H = r) = 0.0	5 $p(W = e) = 0.46$ 8 $p(W = l) = 0.54$
margin	p(H=b) = 0.77	p(H=r) = 0.2	$3 p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $\left|\Omega\right|$

$$p(A|B) = \frac{p(A,B)}{p(B)}$$
 definition of conditional probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $\left|\Omega\right|$

$$p(A|B) = \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities}$$

$$p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6 \quad \text{intuition from previous slide}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $\left|\Omega\right|$

$$\begin{split} p(A|B) &= \frac{p(A,B)}{p(B)} & \text{definition of conditional probabilities} \\ p(W = |\text{ate}|H = \text{brown}) &= \frac{30}{50} = 0.6 & \text{intuition from previous slide} \\ &= \frac{p(W = |\text{ate}, H = \text{brown})}{p(H = \text{brown})} & \text{by applying definition} \end{split}$$

Example

		brown		red	margin
early late	p(W = e, H = p(W = l, H =	b) = 0.31 b) = 0.46	p(W = e, H = r) = $p(W = l, H = r) =$	= 0.15 = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H =	b) = 0.7	p(H = r) =	0.23	$p(\Omega) = 1$
Tak $p(W = lat)$	ble: (Joint) Pro $p(A B)$ ${\rm e} H={\rm brown})$	babilities, $= \frac{p(A, P(I))}{p(I)}$ $= \frac{30}{50} = \frac{p(W)}{0.46}$ $= \frac{0.46}{0.77}$	derived by dividin $\frac{B}{3}$ definition o = 0.6 intuition fr T = late, H = brow p(H = brown) = 0.6	g every f condit rom pre <u>vn)</u> b	vthing by Ω tional probabilities vious slide y applying definition

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- Conditional probabilities can be conditioned on more than two events

 $p(A|B,C,D) = \underbrace{p(A,B,C,D)}_{p(B,C,D)}$

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- Conditional probabilities can be conditioned on more than two events p(A, B, C, D) = p(A, B, C, D)

$$p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$$

Chain rule

$$p(A, B, C, D) = p(A|B, C, D)p(B, C, D)$$

= $p(A|B, C, D)p(B|C, D)p(C, D)$
= $p(A|B, C, D)p(B|C, D)p(C|D)p(D)$

Bayes Law

$$p(B|A) = \frac{p(A, B)}{p(A)} \xrightarrow{p(A|B)p(B)}{p(A)}$$

$$= \frac{p(A|B) p(B)}{p(A)}$$

$$= \frac{p(A|B) p(B)}{p(A)}$$

Allows reordering of conditional probabilities

Follows directly from above definitions

Section 1

Machine Learning Algorithms

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research & science, ...

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research & science, ...
- Why is it interesting for text analysis?
 - Rule-based approaches >don't scale(hard to maintain for real texts

- What is machine learning?
 - Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research & science, ...
- Why is it interesting for text analysis?
 - Rule-based approaches) don't scale(hard to maintain for real texts
 - Big data analyses
 - Automatic prediction of phenomena
 - Statements about 1000 texts more representative than about 10
 - Canonisation, Euro-centrism
 - Insights into data
 - By inspecting features and making error analysis

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Section 2

Naive Bayes Algorithm

Naive Bayes Algorithm

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $\blacktriangleright f_n(x)$; Value of feature *n* for instance *x*
 - $\operatorname{argmax}_i \mathcal{O}$ Select the argument *i* that maximizes the expression *e*

- $f_n(x)$: Value of feature n for instance x
- $\operatorname{argmax}_i e$: Select the argument *i* that maximizes the expression *e*

- $f_n(x)$: Value of feature n for instance x
- $\operatorname{argmax}_i e$: Select the argument *i* that maximizes the expression *e*

prediction(x) = argmax
$$p(c|f_1(x), f_2(x), \dots, f_n(x))$$

How do we calculate $p(c|f_1(x), f_2(x), \ldots, f_n(x))$?

$$p(c|f_1, \dots, f_n) = \frac{p(c_1 f_1, \dots, f_n)}{p(f_1, \dots, f_n)} = \frac{p(f_1, \dots, f_n, c)}{p(f_1, \dots, f_n)}$$
$$= \frac{p(f_1|f_2, \dots, f_n) \cdot p(f_2|f_3, \dots, f_n) \cdot \dots \cdot p(c)}{p(f_1, \dots, f_n)}$$
$$p(f_1, \dots, f_n)$$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

p(

$$c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)} = \frac{p(f_1, f_2, \dots, f_n, c)}{p(f_1, f_2, \dots, f_n)}$$

=
$$\frac{\text{Application of chain rule}}{p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)} = \frac{p(f_1, f_2, \dots, f_n, c)}{p(f_1, f_2, \dots, f_n)}$$

$$= \frac{Application of chain rule}{p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

$$= \frac{p(f_1|c) \times p(f_2|\mathbf{z}) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

Naive Bayes
Prediction Model
$$p(c|f_{1},...,f_{n}) = \frac{p(f_{1}|c) \times p(f_{2}|\mathbf{x}) \times \cdots \times p(c)}{p(f_{1},f_{2},...,f_{n})}$$
Naive Bayes Algorithm
$$p(0|f_{1} \otimes f_{n}, f_{n}) = \frac{p(f_{1}|c) \times p(f_{2}|\mathbf{x}) \times \cdots \times p(c)}{p(f_{1},f_{2},...,f_{n})}$$

$$p(c|f_1, \dots, f_n) = \frac{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

Skip denominator, because it's constant*
prediction(x) =
$$\underset{c \in C}{\operatorname{argmax}} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$$

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.

$$p(c|f_1, \dots, f_n) = rac{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

Skip denominator, because it's constant* prediction(x) = argmax $p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$

$$\operatorname{diction}(x) = \operatorname{argmax}_{c \in C} p(J_1(x)|c) \times p(J_2(x)|c) \times \cdots \times p(c)$$

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.

$$p(c|f_1, \dots, f_n) = \frac{p(f_1|c) \times p(f_2|t) \times \dots \times p(c)}{p(f_1, f_2, \dots, f_n)}$$

Skip denominator, because it's constant* prediction(x) = argmax $p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$

$$prediction(x) = \underset{c \in C}{\operatorname{argmax}} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$$

Where do we get $p(f_i(x)|c)$? – Training!

Naive Bayes Learning Algorithm

- 2. Calculate conditional probabilities
 - Divide each number by the sum of the entire column

• E.g.,
$$p(a|c_1) = \frac{3}{3+5+0}$$
 $p(b|c_2) = \frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- > Data set: 100 e-mails, manually classified as spam or not spam (50/50)
 - $\blacktriangleright Classes C = \{true, false\}$
- Features: Presence of each of these tokens (manually selected): >casino<</pre>, >enlargement, >meeting, >profit, >text, >xxx

Table: Extracted frequencies for features >casino(and >text(

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

- $1. \ {\rm Extract}$ word presence information from new text
- 2. Calculate the probability for each possible class

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

p	true	casino enlargement meeting profit super text xxx	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	\propto	p(casino = 0 true) $p(enlargement = 0 true)$ $p(meeting = 1 true)$ $p(profit = 0 true)$ $p(super = 0 true)$ $p(text = 1 true)$ $p(xxx = 1 true)$	× × × × × × ×
		_		=	$\cdots \times \frac{5}{50} \times \cdots \times \frac{15}{50} \times \cdots =$	=

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

Subsection 1

Problems with Zeros

Danger

		C		
		true	false	
	1	0	35	
ove	0	50	15	
2	\sum	50	50	

What happens in this situation to the prediction?

Danger

		C	
		true	false
love	1	0	35
	0	50	15
	\sum	50	50

- What happens in this situation to the prediction?
- At some point, we need to multiply with p(love = 1 | true) = 0
- ▶ This leads to a total probability of zero (for this class), irrespective of the other features
 - Even if another feature would be a perfect predictor!
- \rightarrow Smoothing (as before)!

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
 - $\blacktriangleright \frac{x_i+1}{N+1}$
 - This leads to values slightly above zero

Example: Spam Classification

Weka

Section 4

Summary

Summary