
Recap

I Last Tuesday
I Machine Learning Experiment
I Convert data set into correct format
I Run machine learning workflow

I weka.classifiers.Evaluation
I weka.classifiers.bayes.NaiveBayes
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Lehrevaluation

I Antworten einsehbar in Ilias
I Vielen Dank für die Blumen �

I Wichtigste Punkte aus Kommentaren
I Tempo der Veranstaltung
I Verhältnis Übungen und Klausur, Inhalt der Übungen
I Vorlesungsmodus

I Weitere Fragen oder Anmerkungen?
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Recap: Probabilities

I Probability: Ratio of events of interest to all possible events (within event space)
I Joint probability: Two events take place simultaneously
I Conditional probability: One event takes place under the assumption that another event

took place
I Can be calculated from joint and individual probabilities: p(A|B) = p(A,B)

p(B)

I Dependent and independent events
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Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W 1

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Experimental Results, Ω: Group of questioned people, |Ω| = 65

1All numbers are made up.
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Relation between hair color H and preferred wake-up time W 1

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Experimental Results, Ω: Group of questioned people, |Ω| = 65

I If we pick a random person, what’s the probability that this person has brown hair?
I

p(H = brown) =?

1All numbers are made up.
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Conditional and Joint Probabilities
Example

Relation between hair color H and preferred wake-up time W 1

↓ W / H → brown red sum

early 20 10 30
late 30 5 35

sum 50 15 65

Table: Experimental Results, Ω: Group of questioned people, |Ω| = 65

p(H = brown) = 50
65 p(H = red) = 15

65
p(W = early) = 30

65 p(W = late) = 35
65

}
sums per row or column

1All numbers are made up.
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I Joint probability: p(W = late,H = brown) = 30
65

I Probability that someone has brown hair and prefers to wake up late
I Denominator: Number of all items

I Conditional probability: p(W = late|H = brown) = 30
50

I Probability that one of the brown-haired participants prefers to wake up late
I Denominator: Number of remaining items (after conditioned event has happened)
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Conditional and Joint Probabilities
Example

brown red margin

early p(W = e,H = b) = 0.31 p(W = e,H = r) = 0.15 p(W = e) = 0.46
late p(W = l,H = b) = 0.46 p(W = l,H = r) = 0.08 p(W = l) = 0.54

margin p(H = b) = 0.77 p(H = r) = 0.23 p(Ω) = 1

Table: (Joint) Probabilities, derived by dividing everything by |Ω|

p(A|B) =
p(A,B)

p(B)
definition of conditional probabilities

p(W = late|H = brown) =
30

50
= 0.6 intuition from previous slide

=
p(W = late,H = brown)

p(H = brown) by applying definition

=
0.46

0.77
= 0.6
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Multiple Conditions
I Joint probabilities can include more than two events

p(E1,E2,E3, . . . )

I Conditional probabilities can be conditioned on more than two events

p(A|B,C ,D) =
p(A,B,C ,D)

p(B,C ,D)

I Chain rule

p(A,B,C ,D) = p(A|B,C ,D)p(B,C ,D)

= p(A|B,C ,D)p(B|C ,D)p(C ,D)

= p(A|B,C ,D)p(B|C ,D)p(C |D)p(D)

Naive Bayes 7 / 26
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Bayes Law

p(B|A) =
p(A,B)

p(A)
=

p(A|B)p(B)

p(A)

Allows reordering of conditional probabilities
I Follows directly from above definitions
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Section 1

Machine Learning Algorithms



Machine Learning Algorithms

Introduction

I What is machine learning?
I Method to find patterns, hidden structures and undetected relations in data

I It’s all around us: Stock market transactions, search engines, surveillance, data-driven
research & science, …

I Why is it interesting for text analysis?
I Rule-based approaches ›don’t scale‹ – hard to maintain for real texts
I Big data analyses

I Automatic prediction of phenomena
I Statements about 1000 texts more representative than about 10
I Canonisation, Euro-centrism

I Insights into data
I By inspecting features and making error analysis
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Machine Learning Algorithms

Two Parts

Prediction Model
I How do we make predictions on data

instances?
I E. g.: how do we assign a part of speech

tag for a word?

Learning Algorithm

I How do we create a prediction model,
given annotated data?

I E. g.: how do we create a system for
assigning a part of speech tag for a word?
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Section 2

Naive Bayes Algorithm



Naive Bayes Algorithm

Naive Bayes
Prediction Model

I Probabilistic model (i.e., takes probabilities into account)
I Probabilities are estimated on training data (relative frequencies)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the
item x, and we assign most probably class

I fn(x): Value of feature n for instance x
I argmaxi e: Select the argument i that maximizes the expression e

def argmax(SET, EXP):
arg = 0
max = 0
foreach i in SET:

val = EXP(i)
if val > max:

arg = i
max = val

return arg

prediction(x) = argmax
c∈C

p(c|f1(x), f2(x), . . . , fn(x))

How do we calculate p(c|f1(x), f2(x), . . . , fn(x))?
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

p(c|f1, . . . , fn) =

p(c, f1, f2, . . . , fn)
p(f1, f2, . . . , fn)

=
p(f1, f2, . . . , fn, c)
p(f1, f2, . . . , fn)

Application of chain rule

=
p(f1|f2, . . . , fn, c)× p(f2|f3, . . . , fn, c)× · · · × p(c)

p(f1, f2, . . . , fn)

Now we – naively – assume feature independence

=
p(f1|c)× p(f2|t)× · · · × p(c)

p(f1, f2, . . . , fn)
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Naive Bayes Algorithm

Naive Bayes
Prediction Model

From previous slide

p(c|f1, . . . , fn) =
p(f1|c)× p(f2|t)× · · · × p(c)

p(f1, f2, . . . , fn)

Skip denominator, because it’s constant∗

prediction(x) = argmax
c∈C

p(f1(x)|c)× p(f2(x)|c)× · · · × p(c)

∗ This is a hack: The largest number in 〈2, 6, 3〉
is the second. This doesn’t change when we divide
every number by the same (constant) number. The
largest of 〈1, 3, 1.5〉 is the second, and the largest
of 〈0.2, 0.6, 0.3〉 is also the second.

Where do we get p(fi(x)|c)? – Training!

Naive Bayes 16 / 26
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Naive Bayes Algorithm

Naive Bayes
Learning Algorithm

1. For each feature fi ∈ F
I Count frequency tables from the training set:

C (classes)
c1 c2 … cm

v(fi)

a 3 2 …
b 5 7 …
c 0 1 …∑

8 10

2. Calculate conditional probabilities
I Divide each number by the sum of the entire column

I E.g., p(a|c1) = 3
3+5+0

p(b|c2) = 7
2+7+1
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Section 3

Example: Spam Classification



Example: Spam Classification

Training
I Data set: 100 e-mails, manually classified as spam or not spam (50/50)

I Classes C = {true, false}
I Features: Presence of each of these tokens (manually selected): ›casino‹, ›enlargement‹,

›meeting‹, ›profit‹, ›super‹, ›text‹, ›xxx‹

C
true false

ca
sin

o 1 45 25
0 5 25∑

50 50

C
true false

te
xt

1 15 35
0 35 15∑

50 50

…

Table: Extracted frequencies for features ›casino‹ and ›text‹
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Example: Spam Classification

Prediction
1. Extract word presence information from new text
2. Calculate the probability for each possible class

p


true

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



casino 0
enlargement 0
meeting 1
profit 0
super 0
text 1
xxx 1





∝

p(casino = 0|true) ×
p(enlargement = 0|true) ×
p(meeting = 1|true) ×
p(profit = 0|true) ×
p(super = 0|true) ×
p(text = 1|true) ×
p(xxx = 1|true)

= · · · × 5

50
× · · · × 15

50
× · · · = . . .

p

(
false

∣∣∣∣∣
[

casino 0
...

...

])
∝ . . .

3. Assign the class with the higher probability
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Subsection 1

Problems with Zeros



Example: Spam Classification

Danger

C
true false

lo
ve

1 0 35
0 50 15∑

50 50

I What happens in this situation to the prediction?

I At some point, we need to multiply with p(love = 1|true) = 0

I This leads to a total probability of zero (for this class), irrespective of the other features
I Even if another feature would be a perfect predictor!

→ Smoothing (as before)!
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Example: Spam Classification

Smoothing

I Whenever multiplication is involved, zeros are dangerous
I Smoothing is used to avoid zeros
I Different possibilities
I Simple: Add something to the probabilities

I xi+1
N+1

I This leads to values slightly above zero
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Example: Spam Classification

Weka
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Section 4

Summary



Summary

Summary
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