Recap

- Last Tuesday
- Machine Learning Experiment
- Convert data set into correct format
- Run machine learning workflow
- weka.classifiers.Evaluation
- weka.classifiers.bayes.NaiveBayes

Lehrevaluation

- Antworten einsehbar in llias
- Vielen Dank für die Blumen

Lehrevaluation

- Antworten einsehbar in llias
- Vielen Dank für die Blumen
- Wichtigste Punkte aus Kommentaren
- Tempo der Veranstaltung
- Verhältnis Übungen und Klausur, Inhalt der Übungen
- Vorlesungsmodus

Lehrevaluation

- Antworten einsehbar in llias
- Vielen Dank für die Blumen
- Wichtigste Punkte aus Kommentaren
- Tempo der Veranstaltung
- Verhältnis Übungen und Klausur, Inhalt der Übungen
- Vorlesungsmodus
- Weitere Fragen oder Anmerkungen?

Naive Bayes

Sprachverarbeitung (VL + Ü)

Nils Reiter

May 23, 2023

Recap: Probabilities

- Probability: Ratio of events of interest to all possible events (within event space)
- Joint probability: Two events take place simultaneously
- Conditional probability: One event takes place under the assumption that another event took place
- Can be calculated from joint and individual probabilities: $p(A \mid B)=\frac{p(A, B)}{p(B)}$
- Dependent and independent events

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W^{1}

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

[^0]
Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W^{1}

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- If we pick a random person, what's the probability that this person has brown hair?

$$
p(H=\text { brown })=? \frac{50}{65}
$$

[^1]
Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W^{1}

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	$(30$
late	30	5	
sum	50	15	$\square 65$

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

$$
\left.\begin{array}{l}
p(H=\text { brown })=\frac{50}{65} \quad p(H=\text { red })=\frac{15}{65} \\
p(W=\text { early })=\frac{30}{65} \quad p(W=\text { late })=\frac{35}{65}
\end{array}\right\} \text { sums per row or column }
$$

[^2]
Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W^{1}

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items

[^3]
Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W^{1}

\downarrow / $/ H \rightarrow$	brown	red	sum
early	20	10	30
late	35	5	35
sum	(5)	15	65

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items
- Conditional probability: $p(W=$ late $\mid H=$ brown $)=\frac{30}{50}$
- Probability that one of the brown-haired participants prefers to wake up late
- Denominator: Number of remaining items (after conditioned event has happened)

[^4]
Conditional and Joint Probabilities

Example

brown $\frac{20}{65}$ red			margin
early	p(W=e,H=b) $=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
p(A \mid B)=\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities }
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \quad \text { intuition from previous slide }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

	brown		
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \text { intuition from previous slide } \\
& =\frac{p(W=\text { late }, H=\text { brown })}{p(H=\text { brown })} \text { by applying definition }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

Multiple Conditions

- Joint probabilities can include more than two events $p\left(E_{1}, E_{2}, E_{3}, \ldots\right)$
- Conditional probabilities can be conditioned on more than two events

$$
p\left((A) \frac{B, C, D)}{}=\frac{p(A, B, C, D)}{p(B, C, D)}\right.
$$

Multiple Conditions

- Joint probabilities can include more than two events $p\left(E_{1}, E_{2}, E_{3}, \ldots\right)$
- Conditional probabilities can be conditioned on more than two events

$$
p(A \mid B, C, D)=\frac{p(A, B, C, D)}{p(B, C, D)}
$$

- Chain rule

$$
\begin{aligned}
p(A, B, C, D) & =p(A \mid B, C, D) p(B, C, D) \\
& =p(A \mid B, C, D) p(B \mid C, D) p(C, D) \\
& =p(A \mid B, C, D) p(B \mid C, D) p(C \mid D) p(D)
\end{aligned}
$$

Bayes Law
$p(B \mid A)=\frac{p(A, B) \text { Definti- }}{P(A)}$

$$
=\frac{p(A B) p(B)^{\text {Kettarye }}}{p(A)}
$$

$$
p(B \mid A)=\frac{p(A, B)}{p(A)}=\frac{p(A \mid B) p(B)}{p(A)}
$$

Allows reordering of conditional probabilities

- Follows directly from above definitions

Section 1

Machine Learning Algorithms

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research \& science, ...

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research \& science, ...
- Why is it interesting for text analysis?
- Rule-based approaches sdon't scaler - hard to maintain for real texts

Introduction

- What is machine learning?
- Method to find patterns, hidden structures and undetected relations in data
- It's all around us: Stock market transactions, search engines, surveillance, data-driven research \& science, ...
- Why is it interesting for text analysis?
- Rule-based approaches idon't scale» - hard to maintain for real texts
- Big data analyses
- Automatic prediction of phenomena
- Statements about 1000 texts more representative than about 10
- Canonisation, Euro-centrism
- Insights into data
- By inspecting features and making error analysis

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Two Parts

Prediction Model

- How do we make predictions on data instances?
- E.g.: how do we assign a part of speech tag for a word?

Learning Algorithm

- How do we create a prediction model, given annotated data?
- E.g.: how do we create a system for assigning a part of speech tag for a word?

Section 2

Naive Bayes Algorithm

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $f_{n}(x)$: Value of feature n for instance x
- $\operatorname{argmax}_{i}$ (e) Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the 1 item x, and we assign most probably class

```
def argmax (SET, EXI):
```

def argmax (SET, EXI):
def
def
max = 0
max = 0
max = 0
max = 0
val = EXP(i)
val = EXP(i)
val = EXP(i)
val = EXP(i)
arg=i
arg=i
max = val
max = val
return arg

```
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
$-\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the 1 item x, and we assign most probably class

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
    val = EXP(i)
    if val > max:
        arg = i
        max = val
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
$-\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

$$
p\left(O \mid \text { Naur }=\operatorname{sinin}, \quad \text { Eubal }=S_{1} c a b=\right.
$$

$$
P\left(1 \mid N a m e=\operatorname{suik}, E_{m b}=J_{1}(a b=15)\right.
$$

Naive Bayes

Prediction Model

Idea: We calculate the probability for each possible class c, given the 1 item x, and we assign most probably class

```
def argmax(SET, EXP):
    arg = 0
    max = 0
    foreach i in SET:
        val = EXP(i)
        if val > max:
        arg = i
        max = val
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
$-\operatorname{argmax}_{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

How do we calculate $p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$?

Naive Bayes
Prediction Model

$$
\begin{aligned}
p\left(c \mid f_{1}, \ldots, f_{n}\right) & =\frac{p\left(c_{1} f_{1}, \ldots f_{n}\right)}{p\left(f_{1}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, \ldots, f_{n}, c\right)}{p\left(f_{1}, \ldots, f_{n}\right)} \\
& =\frac{p\left(f_{1} \mid f_{2}, \ldots f_{n}\right) \cdot p\left(f_{2} \mid f_{3}, \ldots, f_{n}\right) c \ldots p(c)}{p\left(f_{1}, \ldots, f_{n}\right)} \\
n^{N l} \Rightarrow & =\frac{p\left(f_{1} \mid c\right) \cdot p\left(f_{2} \mid c\right) \cdot p\left(f_{3} \mid c\right) \cdots p(c)}{p\left(f_{1}, \ldots, f_{n}\right)}
\end{aligned}
$$

Naive Bayes
Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes
Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Application of chain rule

$$
=\frac{p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Application of chain rule

$$
=\frac{p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Now we - naively - assume feature independence

$$
=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid \text { 気 }\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

$$
\begin{aligned}
& p\left(0 \mid f_{2}=S_{\text {minn }}, f_{2}=S_{1} f_{2}=15\right) \\
& p\left(1 \mid f_{1}=S_{\text {sinh }}, f_{2}=S_{1} f_{2}=15\right) \\
& p\left(S_{\text {smith }} 0\right) \times p(S 10) \times p(1510)
\end{aligned}
$$

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \left\lvert\, \frac{\text { 韦 }}{}\right.\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Skip denominator, because it's constant*
$\operatorname{prediction}(x)=\underset{c \in C}{\operatorname{argmax}} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times(p)$

Naive Bayes

Prediction Model

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.

From previous slide

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Skip denominator, because it's constant*

$\operatorname{prediction}(x)=\operatorname{argmax} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)$
$c \in C$

Naive Bayes

Prediction Model

* This is a hack: The largest number in $\langle 2,6,3\rangle$ is the second. This doesn't change when we divide every number by the same (constant) number. The largest of $\langle 1,3,1.5\rangle$ is the second, and the largest of $\langle 0.2,0.6,0.3\rangle$ is also the second.

From previous slide

$$
\begin{aligned}
p\left(c \mid f_{1}, \ldots, f_{n}\right)= & \frac{p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)} \\
& \text { Skip denominator, because it's constant }{ }^{*} \\
\operatorname{prediction}(x)= & \underset{c \in C}{\operatorname{argmax}} p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)
\end{aligned}
$$

Naive Bayes

Learning Algorithm

1. For each feature $f_{i} \in F$

- Count frequency tables from the training set:

2. Calculate conditional probabilities

- Divide each number by the sum of the entire column
- E.g., $p\left(a \mid c_{1}\right)=\frac{3}{3+5+0} \quad p\left(b \mid c_{2}\right)=\frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- Data set: 100 e-mails, manually classified as spam or not spam (50/50)
- Classes $C=\{$ true, false $\}$
- Features: Presence of each of these tokens (manually selected): ı casino «, , enlargement \wedge,

Table: Extracted frequencies for features casinos and texts

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class
$p\left(\begin{array}{l}\left.\text { true } \left\lvert\,\left[\begin{array}{ll}\text { casino } & 0 \\ \text { enlargement } & 0 \\ \text { meeting } & 1 \\ \text { profit } & 0 \\ \text { super } & 0 \\ \text { text } & 1 \\ \text { xxx } & 1\end{array}\right]\right.\right) \quad \begin{array}{ll}p(\text { casino }=0 \mid \text { true }) & \times \\ p(\text { enlargement }=0 \mid \text { true }) & \times \\ p(\text { meeting }=1 \mid \text { true }) & \times \\ p(\text { profit }=0 \mid \text { true }) & \times \\ p(\text { super }=0 \mid \text { true }) & \times \\ p(\text { text }=1 \mid \text { true }) & \times \\ p(\text { xxx }=1 \mid \text { true })\end{array} \\ \\ \end{array}\right.$

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Subsection 1

Problems with Zeros

Danger

		C	
		true	false
	1	0	35
	0	50	15
			50

- What happens in this situation to the prediction?

Danger

		C	
		true	false
	1	0	35
	0	50	15

- What happens in this situation to the prediction?
- At some point, we need to multiply with $p($ love $=1 \mid$ true $)=0$
- This leads to a total probability of zero (for this class), irrespective of the other features
- Even if another feature would be a perfect predictor!
\rightarrow Smoothing (as before)!

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
- $\frac{x_{i}+1}{N+1}$
- This leads to values slightly above zero

Example: Spam Classification

Weka

Section 4
Summary

Summary

Two Areas: Prediction Model
Learning Algonthm

Naive Bayes

- Naive: Features Independent
- Argmax

[^0]: ${ }^{1}$ All numbers are made up.

[^1]: ${ }^{1}$ All numbers are made up.

[^2]: ${ }^{1}$ All numbers are made up.

[^3]: ${ }^{1}$ All numbers are made up.

[^4]: ${ }^{1}$ All numbers are made up.

