
Recap

I Second to last Tuesday
I Machine Learning Experiment
I Convert data set into correct format
I Run machine learning workflow

I weka.classifiers.Evaluation
I weka.classifiers.bayes.NaiveBayes

I Last Tuesday
I Our first ML algorithm: Naive Bayes
I Based on p(c|f ) – probability of class c given feature value f
I Naive: Assumes that features are independent of each other

I This is (usually) not the case
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Prediction Model – Toy Example

I What are the instances?

I Situations we are in
(this is not really automatisable)

I What are the features?

I Consciousness
I Clothing situation
I Promises made
I Whether we are driving
I …
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Trees

I Well-established data structure in CS

I A tree is a pair that contains
I some value and
I a (possibly empty) set of children

I Children are also trees
I Recursive definition: “A tree is something and a bunch of sub trees”

I Recursion is an important ingredient in many algorithms and data structures
I If the tree has labels on the edges, the pair becomes a triple

v

w u

s
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I Well-established data structure in CS
I A tree is a pair that contains

I some value and
I a (possibly empty) set of children

I Children are also trees
I Recursive definition: “A tree is something and a bunch of sub trees”

I Recursion is an important ingredient in many algorithms and data structures
I If the tree has labels on the edges, the pair becomes a triple

v

w u

s

lw lu

ls

Week 8 4 / 22



Prediction Model

I Each non-leaf node in the tree represents one feature
I Each leaf node represents a class label
I Each branch at this node represents one possible feature value

I Number of branches = |v(fi)| (number of possible values)

I Make a prediction for x:
1. Start at root node
2. If it’s a leaf node

I assign the class label
3. Else

I Check node which feature is to be tested (fi)
I Extract fi(x)
I Follow corresponding branch
I Go to 2
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Learning Algorithm

I Core idea: The tree represents splits of the training data

1. Start with the full data set Dtrain as D
2. If D only contains members of a single class:

I Done.
3. Else:

I Select a feature fi
I Extract feature values of all instances in D
I Split the data set according to fi: D = Da ∪ Db ∪ Dc . . .

Dα = {x ∈ D|fi(x) = α}, a, b, c ∈ v(fi)
I Go back to 2

I Remaining question: How to select features?
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Feature Selection

I What is a good feature?
I One that maximizes homogeneity in the split data set

I “Homogeneity”
I Increase
{♠♠♠♥} = {♥} ∪ {♠♠♠}

I No increase
{♠♠♠♥} = {♠} ∪ {♠♠♥}

I Homogeneity: Entropy/information Shannon (1948)
I Rule: Always select the feature with the highest information gain (IG)

I (= the highest reduction in entropy = the highest increase in homogeneity)
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Entropy
Intuition

I Measures the amount of uncertainty
I How uncertain is the next symbol in these sequences?

I aaaaaaaaaaaaaa

– only one symbol, very certain
I abbaabbabbaaba – two symbols, evenly distributed, 50:50
I aaaaabbaaaaaba – two symbols, unevenly distributed, 75:25
I cbabcababcbaca – three symbols, evenly distributed, 33:66
I nmkfjigeahldcb – 14 symbols, very uncertain

I Certainty depends on number of different symbols and on their distribution
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Entropy (Shannon, 1948)

H (X) = −
n∑

i=1

p(xi) logb p(xi)

number of classes present in X
relative frequency of the class

logb(x) = y
exactly if
by = x:

25 = 32⇔ log2 32 = 5

Interpretation
Entropy is the average number of bits∗ we need to specify an outcome of the random variable
(∗ for b = 2)
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Entropy (Shannon, 1948)
Examples

H ({♠♠♠♠}) = −4

4
log2

4

4
= 0

H ({♠♠♠♥}) = −

3

4
log2

3

4︸ ︷︷ ︸
♠

+
1

4
log2

1

4︸ ︷︷ ︸
♥

 = 0.811

H ({♠♠♥♥}) = . . . = 1 = H ({♠♠♠♥♥♥}) = . . .

H ({♠♠♥♥♣♣}) = 1.585

H ({♠♥♣♦}) = 2

H ({nmkfjigeahldcb}) = 3.807
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Point-wise Mutual Information

Point-wise Mutual Information
MS99, pp. 178 ff.

▶ Point-wise: Statement about values of random variable (i.e., occurrence of specific word)
▶ Non-pointwise mutual information makes a statement about random variables themselves

▶ Mutual: Symmetric
▶ One word provides information to the next and vice versa

I(w1,w2) = log2
p(w1,w2)

p(w1)p(w2)

p(wi) = Probability of word wi

p(wi,wj) = Probability of both words appearing together, up to a certain distance
log2 x = y ≡ 2y = x

Collocations 49 / 275

April 14
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Entropy
Mutual Information

I Entropy: Amount of uncertainty in a random variable
I Joint entropy: Amount of uncertainty in two random variables
I Conditional entropy: Amount of uncertainty, when another random variable is known

I Mutual Information
I Reduction of entropy in one random variable by knowing about the other
I MI (X ,Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X) =

∑
x,y p(x, y) log2

p(x,y)
p(x)p(y)

I Point-wise Mutual Information
I Statement about values of random variable (i.e., occurrence of specific word)
I I (w1,w2) = log2

p(w1,w2)
p(w1)p(w2)

Manning/Schütze, 1999, 67

Week 8 12 / 22



Entropy
Mutual Information

I Entropy: Amount of uncertainty in a random variable
I Joint entropy: Amount of uncertainty in two random variables
I Conditional entropy: Amount of uncertainty, when another random variable is known

I Mutual Information
I Reduction of entropy in one random variable by knowing about the other
I MI (X ,Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X) =

∑
x,y p(x, y) log2

p(x,y)
p(x)p(y)

I Point-wise Mutual Information
I Statement about values of random variable (i.e., occurrence of specific word)
I I (w1,w2) = log2

p(w1,w2)
p(w1)p(w2)

Manning/Schütze, 1999, 67

Week 8 12 / 22



Entropy
Mutual Information

I Entropy: Amount of uncertainty in a random variable
I Joint entropy: Amount of uncertainty in two random variables
I Conditional entropy: Amount of uncertainty, when another random variable is known

I Mutual Information
I Reduction of entropy in one random variable by knowing about the other
I MI (X ,Y ) = H (X)−H (X |Y ) = H (Y )−H (Y |X) =

∑
x,y p(x, y) log2

p(x,y)
p(x)p(y)

I Point-wise Mutual Information
I Statement about values of random variable (i.e., occurrence of specific word)
I I (w1,w2) = log2

p(w1,w2)
p(w1)p(w2)

Manning/Schütze, 1999, 67

Week 8 12 / 22



Feature Selection
{♠♠♠♥}

{♥} {♠♠♠}

H ({♠♠♠♥}) = H ([3, 1]) = 0.562

H ({♥}) = H ([1]) = 0

H ({♠♠♠}) = H ([3]) = 0

{♠♠♠♥}

{♠} {♠♠♥}

H ({♠♠♠♥}) = H ([3, 1]) = 0.562

H ({♠}) = H ([1]) = 0

H ({♠♠♥}) = H ([2, 1]) = 0.637

IG(f1) = H ({♠♠♠♥})−�
(
H ({♥}),H ({♠♠♠})

)
= 0.562− 0 = 0.562

IG(f2) = H ({♠♠♠♥})−�
(
H ({♠}),H ({♠♠♥})

)
= 0.562− (

3

4
0.637 +

1

4
0)

= 0.562− 0.562− 0.477 = 0.085
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Feature Selection using Entropy
I We calculate entropy for the target class
I But in different sub sets of the data set

Listing 1: Feature selection in pseudo code for a data set D
1 function select_feature(D):
2 base_entropy = entropy(D)
3 ig_map = {}
4 foreach feature f:
5 weighted_feature_entropy = 0
6 foreach feature value v:
7 D_v = subset of D with all instances that have the value v
8 sub_entropy = entropy(D_v)
9 sub_size = length(D_v)

10 weighted_feature_entropy = weighted_feature_entropy + ( sub_entropy * sub_size )
11 information_gain = base_entropy - ( (weighted_feature_entropy) / length(D) )
12 ig_map.put(f, information_gain)
13 return maximum from ig_map
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ID3

J. Ross Quinlan (1986). »Induction of Decision Trees«. In: Machine Learning 1.1, pp. 81–106.
doi: 10.1007/BF00116251

Limitations
I Only categorical attributes
I Cannot handle missing values
I Tends to overfit: »In my experience, almost all decision trees can benefit from

simplification« (Quinlan, 1993, 36)
I Even today, overfitting is a huge challenge for ML algorithms!

⇒ Extension: C4.5 (Quinlan, 1993)
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Subsection 1

Example: Spam Classification
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Data set (the same as last week)

I Data set: 100 e-mails, manually classified as spam or not spam (50/50)
I Classes C = {true/1, false/0}

I Features: Presence of each of these tokens (manually selected): ›casino‹, ›enlargement‹,
›meeting‹, ›profit‹, ›super‹, ›text‹, ›xxx‹

Mail ›casino‹ ›enlargement‹ ›meeting‹ ›profit‹ ›super‹ ›text‹ ›xxx‹ C

1 1 1 0 0 1 1 1 0
2 0 1 0 1 0 0 0 1
3 1 0 1 0 1 0 0 0
4 1 1 1 0 0 0 0 0
5 0 1 1 0 0 1 1 1
...

...
...

...
...

...
...

...
...
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Learning Algorithm
First step: Use the full data set

H (full data set) = 1

H (›casino‹ = 1) = 0.9991

H (›casino‹ = 0) = 0.9985

H (›casino‹) =
(56× 0.9991) + (44× 0.9985)

100
= 0.9989

IG(›casino‹) = 1− 0.9989 = 0.0012

IG(›profit‹) = 0.0073
...

...

›profit‹
0 1
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Learning Algorithm

Next step: Use the data set after application of the first selected feature
›profit‹ = 0

H (data set) = 0.99403

H (›casino‹ = 1) = 0.9910

H (›casino‹ = 0) = 0.9963

IG(›casino‹) = 0.00029

IG(›text‹) = 0.01151

›profit‹ = 1

H (data set) = 0.99107

H (›casino‹ = 1) = 0.9366

H (›casino‹ = 0) = 1

IG(›casino‹) = 0.0150

IG(›meeting‹) = 0.00029

›profit‹
0 1

›text‹ ›casino‹
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Learning Algorithm

Next step: Use the data set after application of the first two layers of selected features

›profit‹

›text‹ ›casino‹
0 1

›enlargement‹ ›casino‹
0 1

›xxx‹ ›super‹
0 1

...
...

...
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Summary

Summary

I Naive Bayes in Weka
I Decision Tree

I Transparent prediction model: Easy to apply by humans
I Learning algorithm

I Recursively split the training data set according to features
I Use information gain to maximize the homogeneity in the sub sets

I Compared with Naive Bayes
I Feature dependence modeled through tree structure

I DT in Weka: Try for yourselves! �
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