Recap

> Second to last Tuesday

» Machine Learning Experiment
> Convert data set into correct format
» Run machine learning workflow

» weka.classifiers.Evaluation
P> weka.classifiers.bayes.NaiveBayes
—_—

> Last Tuesday

» Our first ML _algorithm: Naive Bayes
» Based on probability of class ¢ given feature valuesf

» Naive: Asstmes’that features are independent of each other
» This is (usually) not the case
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Prediction Model — Toy Example
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Prediction Model — Toy Example

» What are the instances?
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Prediction Model — Toy Example
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» What are the instances?

> Situations we are in
(this is not really automatisable)
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Prediction Model — Toy Example

» What are the instances?
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Prediction Model — Toy Example
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» What are the instances?

» Situations we are in
(this is not really automatisable)

» What are the features?

» Consciousness

» Clothing situation

» Promises made

» Whether we are driving
»
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Trees

» Well-established data structure in CS
> A tree is a pair that contains

» some value and
> a (possibly empty) set of children

» Children are also trees
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Trees

» Well-established data structure in CS
> A tree is a pair that contains

» some value and
> a (possibly empty) set of children

» Children are also trees
» Recursive definition: “A tree is something and a bunch of sub trees”
» Recursion is an important ingredient in many algorithms and data structures
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Trees

. . Vo) \W-
» Well-established data structure in CS / \
> A tree is a pair that contains ‘

» some value and
> a (possibly empty) set of children S
» Children are also trees

» Recursive definition: “A tree is something and a bunch of sub trees”
» Recursion is an important ingredient in many algorithms and data structures

P If the tree has labels on the edges, the pair becomes a triple
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Trees

v
» Well-established data structure in CS l“’/ \l“
. . . w u
> A tree is a pair that contains
Is
» some value and

> a (possibly empty) set of children S
» Children are also trees

» Recursive definition: “A tree is something and a bunch of sub trees”
» Recursion is an important ingredient in many algorithms and data structures

P If the tree has labels on the edges, the pair becomes a triple
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. . Am | conscious?
Prediction Model - @
» Each non-leaf node in the tree represents one feature
» Each leaf node represents a class label
» Each branch at this node represents one possible feature value
» Number of branches = |v(f;)| (number of possible values) EWLM,.L&J
S
C

Week 8 5/22


Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter
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Prediction Model ~ VIS NO
¥

» Each non-leaf node in the tree represents one feature

» Each leaf node represents a class label
» Each branch at this node represents one possible feature value
» Number of branches = |v(f;)| (number of possible values)

> Make a prediction for z: ( ( E
28N\ (9 < >
1. Start at root node . C
2. If it's a leaf node

> assign the class label
3. Else
» Check node which feature is to be tested (f;)
Extract fi(z)

>
» Follow corresponding branch
> Go to 2

|

S
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Learning Algorithm

» Core idea: The tree represents splits of the training data
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Learning Algorithm

» Core idea: The tree represents splits of the training data

1. Start with the full data set Diain as D

2. If D only contains members of a single class:

>

3. Else:

| 2
>
>

>

Done.

Select a feature f;

Extract feature values of all instances in D
Split the data set according to fi: D= D, UD,UD....

Do = {z € D|fi(z) = o},
Go back to 2

a, b, ¢ € v(fi)
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Learning Algorithm

» Core idea: The tree represents splits of the training data
1. Start with the full data set Diain as D

2. If D only contains members of a single class:
»> Done.
3. Else:

> Select a feature f;
» Extract feature values of all instances in D
» Split the data set according to fi: D= D,UDy,UD,...

Do = {z € D|fi(z) = a}, a,b,c€v(fi)
» Go back to 2

» Remaining question: How to select features?
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Feature Selection

> What is a good feature?
P> One that maximizes homogeneity in the split data set
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Feature Selection

> What is a good feature?

P> One that maximizes homogeneity in the split data set
> “Homogeneity"”

> Increase

{AMAD} = (0} U (Ah4)

» No increase

(AR} = (4} U {AA0}
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Feature Selection

> What is a good feature? S & & flp 03

» One that maximizes homogeneity in the split data set / \
> “Homogeneity” E
» Increase /

i:' ) ;o
@_ @}U@ <+ better split! 62 é? ? VA
ncrease

{AAAO} = {a} U {60}
» Homogeneity: Entropy/information Shannon (1948)
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Feature Selection

> What is a good feature?
» One that maximizes homogeneity in the split data set
> “Homogeneity"”
> Increase
{NMAO} = {0} U {MhdB} — better split!
» No increase
{AAAO} = (A} U {#AO}
» Homogeneity: Entropy/information Shannon (1948)
> Rule: Always select the feature with the highest information gain (IG)
> (= the highest reduction in entropy = the highest increase in homogeneity)
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Entropy

Intuition

> Measures the amount of uncertainty

» How uncertain is the next symbol in these sequences?

» 23a3aaaaaaaaaa — a4
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?
» aaaaaaaaaaaaaa — only one symbol, very certain
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain
> abbaabbabbaaba
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain
> abbaabbabbaaba — two symbols, evenly distributed, 50:50
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain
> abbaabbabbaaba — two symbols, evenly distributed, 50:50
P> aaaaabbaaaaaba
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain
» abbaabbabbaaba — two symbols, evenly distributed, 50:50
» aaaaabbaaaaaba — two symbols, unevenly distributed, 75:25
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Entropy

Intuition

> Measures the amount of uncertainty

» How uncertain is the next symbol in these sequences?

>

>
>
>

aaaaaaaaaaaaaa — only one symbol, very certain
abbaabbabbaaba — two symbols, evenly distributed, 50:50
aaaaabbaaaaaba — two symbols, unevenly distributed, 75:25
cbabcababcbaca
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain

» abbaabbabbaaba — two symbols, evenly distributed, 50:50
» aaaaabbaaaaaba — two symbols, unevenly distributed, 75:25
» cbabcababcbaca — three symbols, evenly distributed, 33:66
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain

» abbaabbabbaaba — two symbols, evenly distributed, 50:50
» aaaaabbaaaaaba — two symbols, unevenly distributed, 75:25
» cbabcababcbaca — three symbols, evenly distributed, 33:66
» nmkfjigeahldcb
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Entropy

Intuition

> Measures the amount of uncertainty
» How uncertain is the next symbol in these sequences?

» aaaaaaaaaaaaaa — only one symbol, very certain

» abbaabbabbaaba — two symbols, evenly distributed, 50:50
» aaaaabbaaaaaba — two symbols, unevenly distributed, 75:25
» cbabcababcbaca — three symbols, evenly distributed, 33:66
» nmkfjigeahldcb — 14 symbols, very uncertain

» Certainty depends on number of different symbols and on their distribution
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Entropy (Shannon, 19438) ( 7
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Entropy (Shannon, 1948)

[ entropy of random variable X

n

H(X) = = pla) logy play)

=1
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Entropy (Shannon, 1948)

entropy of random variable X

( number of classes present in X

n
H(X p Z; lOgbp xl)
=1
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Entropy (Shannon, 1948)

entropy of random variable X

number of classes present in X
relatlve frequency of the class

Zp z7) log), p(:)

i=1
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Entropy (Shannon, 1948)

entropy of random variable X

number of classes present in X
relatlve frequency of the class

log,(z) =y
Zp z;) log, p(ai) exactly if
i=1
bY = x:

2> =32 < log, 32 =15

Week 8 9/22



Entropy (Shannon, 1948)

entropy of random variable X

number of classes present in X
relatlve frequency of the class

log,(z) =y
Zp z;) log, p(ai) exactly if
i=1
bY = x:

25 =32 logy, 32 =5

Interpretation

Entropy is the average number of bits* we need to specify an outcome of the random variable
(* for b=2)
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Entropy (Shannon, 1948)

Examples

H({AMAM})

H({AMAO})

H({hAOV})

310e 34 1
198217

[ Q
L=1= H{MAAOOV}) = ...

1
%y | = 0.811
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Entropy (Shannon, 1948)

Examples

H({AMAM})

H({AMAO})

H({#h&OO}
H({®MOOhd}
H({AO®O}
H({nmkfjigeahldcb}

~— — — —

4

4
leogg Z =0

3 logy 3 + E 1

4 4 4
L) @

. =1=H({MhM&OOO}) = ...

1.585

2

3.807

1
%y | = 0.811
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Point-wise Mutual Information

Point-wise Mutual Information
MS99, pp. 178 ff.

» Point-wise: Statement about values of random variable (i.e., occurrence of specific word)
» Non-pointwise mutual information makes a statement about random variables themselves

» Mutual: Symmetric
» One word provides information to the next and vice versa

W 8

p(wy, wp)
I(wy, we) = —
(wn, ) * plwn)p(ws)
p(w;) = Probability of word w;
p(w;, w;) = Probability of both words appearing together, up to a certain distance
loggz=y = 2Y==x

Collocations 49 /275

Week 8
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Entropy

Mutual Information

> Entropy: Amount of uncertainty in a random variable

» Joint entropy: Amount of uncertainty in two random variables
» Conditional entropy: Amount of uncertainty, when another random variable is known
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Entropy

Mutual Information

> Entropy: Amount of uncertainty in a random variable

» Joint entropy: Amount of uncertainty in two random variables
» Conditional entropy: Amount of uncertainty, when another random variable is known

» Mutual Information
» Reduction of entropy in one random variable by knowing about the other

> MI(X,Y) = H(X) - HX|Y) = H(Y) - H(Y|X) =3,  p(z,y)log, 254
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Entropy

Mutual Information

> Entropy: Amount of uncertainty in a random variable

» Joint entropy: Amount of uncertainty in two random variables

» Conditional entropy: Amount of uncertainty, when another random variable is known
» Mutual Information

» Reduction of entropy in one random variable by knowing about the other

> MI(X,Y) = H(X) - HX|Y) = H(Y) - H(Y|X) =3,  p(z,y)log, 254
» Point-wise Mutual Information

> Statement about values of random variable (i.e., occurrence of specific word)

> I(wy, up) = log, Fiuwe)

Manning/Schiitze, 1999, 67
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Feature Selection
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Feature Selection

{0040} {(AAAD}

/ \ / N\
{0} {Aha} {o}@\
H{NMAD}) = H([3,1]) = 0.562 H{AMAOY) = H([3,1]) = 0.562
H{O}) = H({1])=0 H({#}) = H({1]))=0
H({#hA}) = H([3])=0 H({#&O}) = H([2,1]) = 0.637
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Feature Selection

CL TV {AAAO}
/ \ / \

{0} {haa} {#} {440}
H{AMADY) = H([3,1]) = 0.562 H{AMADY) = H([3,1]) = 0.562
H{O}) = H([1])=0 H({#}) = H({1])=0
H({add}) = H([3])=0 H({#&O}) = H([2,1]) =0.637

IG(H) = H{AMMO}) — 2 (H{D}), H({#AA}))
— 0.562—0 = 0.562

IG(fr) = H({MMAO}) — o (H({M}), H({AMD}))
= 0.562— (%0.637 + 30)
= 0.562 — 0.562 — 0.477 = 0.085
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Feature Selection using Entropy

> We calculate entropy for the target class
» But in different sub sets of the data set
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Feature Selection using Entropy

> We calculate entropy for the target class
» But in different sub sets of the data set

Listing 2: Feature selection in pseudo code for a data set D

function select_feature(D):
base_entropy = entropy(D)
ig_map = {}
foreach feature f:
weighted_feature_entropy = 0
foreach feature value v:
D_v = subset of D with all instances that have the value v
sub_entropy = entropy(D_v)
sub_size = length(D_v)
10 weighted_feature_entropy = weighted_feature_entropy + ( sub_entropy * sub_size )
11 information_gain = base_entropy - ( (weighted_feature_entropy) / length(D) )
12 ig_map.put(f, information_gain)
13 return maximum from ig_map

© O N OO AW N
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ID3

J. Ross Quinlan (1986). »Induction of Decision Trees«. In: Machine Learning 1.1, pp. 81-106.
DOI: 10.1007/BF00116251

Limitations

» Only categorical attributes

» Cannot handle missing values
» Tends to overfit: »In my experience, almost all decision trees can benefit from

simplification« (Quinlan, 1993, 36)
» Even today, overfitting is a huge challenge for ML algorithms!
= Extension: C4.5 (Quinlan, 1993)
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Subsection 1

Example: Spam Classification
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Data set (the same as last week)

> Data set: 100 e-mails, manually classified as spam or not spam (50/50)

> Classes C' = {true/1, false/0}

> Features: Presence of each of these tokens (manually selected): »casino«, renlargements,
ymeeting«, yprofit«, ysuper, ytext«, yxxx«

Mail )ycasino¢ renlargement« ymeeting yprofit« ysuper¢ ytext( IXXX( C

1 1 1 0 0 1 1 1 0

2 0 1 0 1 0 0 0 1

3 1 0 1 0 1 0 0 0

4 1 1 1 0 0 0 0 0

5 0 1 1 0 0 1 1 1
Week 8
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Learning Algorithm

First step: Use the full data set

H(full dataset) = 1
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Learning Algorithm

First step: Use the full data set

H(full dataset) = 1
H()casino« = 1) 0.9991
H(>casinoc =0) = 0.9985
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Learning Algorithm
First step: Use the full data set
H(full data set)
H()casino«=1)
H()casino« = 0)
H ()casinox)
)
)

IG (»casino«
IG(>profit¢

1
0.9991

0.9985

. 1 44 .
(56 x 0.9991) + (44 x 0.9985) _ oo
100
1 —0.9989 = 0.0012
0.0073
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Learning Algorithm
First step: Use the full data set
H(full data set)
H()casino«=1)
H()casino« = 0)
H ()casinox)
)
)

IG (»casino«
IG(>profit¢

1
0.9991
0.9985

(56 x 0.9991) + (44 x 0.9985)

1—-0.9989 = 0.0012

0.0073

Week 8
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Learning Algorithm

Next step: Use the data set after application of the first selected feature

yprofitc = 0

H(data set)
H(ycasino« = 1)
H()casino« = 0)

IG(ycasino«)

IG (rtext)

0.99403
0.9910
0.9963
0.00029
0.01151

Week 8
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Learning Algorithm

Next step: Use the data set after application of the first selected feature
yprofitc = 1

yprofitc = 0

H(data set)
H(ycasino« = 1)
H()casino« = 0)

IG(ycasino«)

IG (rtext)

0.99403
0.9910
0.9963
0.00029
0.01151

Week 8

H(data set
H(>casino« =1
H(>casino« =0

IG(»casino«

IG(ymeeting:

)
)
)
)
)

(/
ytext«

yprofit¢

0.99107
0.9366
1
0.0150
0.00029

N
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Learning Algorithm

Next step: Use the data set after application of the first selected feature
yprofitc = 1

yprofitc = 0

H(data set)
H(ycasino« = 1)
H()casino« = 0)

IG(ycasino«)

IG (rtext)

0.99403
0.9910
0.9963
0.00029
0.01151

Week 8

H(data set
H(>casino« =1
H(>casino« =0

IG(»casino«

IG(ymeeting:

)
)
)
)
)

(/
ytext«

yprofit¢

0.99107
0.9366
1
0.0150
0.00029

N

19/22



yprofit¢

0" N\

ytext« ycasino«

Learning Algorithm

Next step: Use the data set after application of the first selected feature

yprofitc = 0 yprofitc = 1
H(data set) = 0.99403 H(data set) = 0.99107
H(casinoc=1) = 0.9910 H()casinoc=1) = 0.9366
H()casinoc=0) = 0.9963 H(casinoc=0) = 1
IG(ycasino«) = 0.00029 IG(ycasino«) = 0.0150
IG(rtext¢) = 0.01151 IG(ymeetingc) = 0.00029
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19/22



Learning Algorithm

Next step: Use the data set after application of the first two layers of selected features

yprofit«
ytext« ycasino«
yenlargement« casino« XXX ysuper(
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Summary

Summary

> Naive Bayes in Weka
» Decision Tree

» Transparent prediction model: Easy to apply by humans
> Learning algorithm

» Recursively split the training data set according to features
> Use information gain to maximize the homogeneity in the sub sets

» Compared with Naive Bayes
» Feature dependence modeled through tree structure
» DT in Weka: Try for yourselves! ©
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