Recap

Word2Vec
» Method to represent words in vector space
» Train a neural network on a certain task, extract word weights

» Tasks: Skip-gram and continuous bag of words
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CBOW Skip-gram
Continuous Bag of Words (CBOW) Skip-Gram
Context words used to predict a single word One word used to predict its context
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Skip-gram

» Intuition: »a word is likely to occur near the target if its embedding is similar to the
target embedding« Jurafsky/Martin (JM20, 112)
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Skip-gram

» Intuition: »a word is likely to occur near the target if its embedding is similar to the
target embedding« Jurafsky/Martin (JM20, 112)
> Classifier:

» Predict for (¢, ¢) wether ¢ are really context words for ¢
> Probability of ¢ and ¢ being positive examples: @
> Classifier training requires a loss function (as in logistic regression)
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Loss Function

> Maximize '(m (positive samples)
> Minimize negative samples) => H . ?(’ [£ ( cn)

\
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Loss Function

» Maximize p(+|t, ¢) (positive samples)
» Minimize p(+|t, ¢,,) (negative samples)
L T
7(0) = Z@lo + Y (e log
\’ (6: Concatenation of all £ ¢ Cn)
- _
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Loss Function

» Maximize p(+|t, ¢) (positive samples)
» Minimize p(+|t, ¢,,) (negative samples)

J(0) = 21,0 log p(+It, ¢) + 321 .y log P(= 11, cn)

(6: Concatenation of all £ ¢ Cn)

» How to calculate and p(—|t, cn)?

» Where to we get negative samples?
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How to Calculate p(+|t, ¢) and p(—|t, ¢;)?

> Metric that takes two vectors and returns a similarity score

> Linear algebra:-—dot product (»Skalarprodukt«
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How to Calculate p(+|t, ¢) and p(—|t, ¢;)?

> Metric that takes two vectors and returns a similarity score

» Linear algebra: dot product (»Skalarprodukt«)

i=1
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How to Calculate p(+|¢, ¢) and p(—|t, ¢,)?

Dot product
(O-2e(A- 1) ¢ (/LO,T)

S04« of

&':@ = A S
b = 111,05D ‘
b =
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How to Calculate p(+|¢, ¢) and p(—|t, ¢,)?

Dot product

STRRS TR SY)
|

0,1, 1]
[1,1,0.5]
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How to Calculate p(+|¢, ¢) and p(—|¢, c,)?

The Logistic Function

iN

e

— 1 _ 1 _ 1
Yy = T+e—z/ 1+e—(ai:+b) - 1+e—(1*z+0)
y =

1+e—(10*1:—15)

. 1
Y= 1+C—(110*a:+15)
Y = 11 e—00=2—10)
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How to Calculate p(+|t, ¢) and p(—|t n)?
R funche

Word2Vec (Missing Details) 9/17


Nils Reiter

Nils Reiter

Nils Reiter


How to Calculate p(+|t, ¢) and p(—|t, ¢;)?

1
p(+|t,e) = ———
(Heo) = ——
(lte) = 1-p(tte)=1——
pi—I|t, € = —p ,¢)=1— =2
1+ e tc

More than one context word

Assumption: They are independent, allowing multiplication

1
p(+H|t, ci:k) = =
(e = Tl7m
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Where to we get negative samples?

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each
other
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Where to we get negative samples?

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each
other

» Negative sampling

» For every positive tuple @ we add k negative tuples
> Negative tuple (¢, c,), with ¢, randomly selected (and ¢ # c,)
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Where to we get negative samples?

P> Negative examples

» Training a classifier needs negative examples, i.e., words that are not in the context of each
other
» Negative sampling
> For every positive tuple (¢, ¢), we add k negative tuples
» Negative tuple (¢, ¢,), with ¢, randomly selected (and t # c,,)
> Select noise words according to their weighted frequency
> pa(w) count(w)®

= > count(w’)e

» This leads to rare words being more frequently selected, frequent words less
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Where to we get negative samples?

P> Negative examples
» Training a classifier needs negative examples, i.e., words that are not in the context of each
other
» Negative sampling
> For every positive tuple (¢, ¢), we add k negative tuples
> Negative tuple (¢, ¢,,), with ¢, randomly selected (and t # ¢,,)
P Select noise words according to their weighted frequency
> pa(w) count(w)®

= > count(w’)e
» This leads to rare words being more frequently selected, frequent words less

> Two new ‘parameters’ on this slide: k and «

» They have a di tus than @ (the parameters we want to learn)
> Therefofe: arameters
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Remarks and observations

» Each word is used twice, with different roles

> As target word (for predicting its context)
> As context word (to be predicted from another target word)
> Different options: Only use one embedding, combine them by addition or concatenation
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Remarks and observations

> Each word is used twice, with different roles
> As target word (for predicting its context)
> As context word (to be predicted from another target word)
> Different options: Only use one embedding, combine them by addition or concatenation
> Matrices
» Conceptually, it is not hugely important how the embeddings are stored in detail
But for the implementation because of efficiency
All target vectors are stored in matrix W (word matrix)

All context vectors are stored in matrix C' (context matrix)

| 4
| 4
| 4
> 0= (W,C)
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Section 1

Bias in Embeddings



Bias in Embeddings

Bias in Embeddings

» Important discussion: How biased are embeddings?

» And related: How can we measure it?
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Bias in Embeddings

Bias in Embeddings

» Important discussion: How biased are embeddings?

» And related: How can we measure it?
> WEAT: Word-Embedding Association Test Caliskan et al. (2017)

> Inspired by Implicit Association Test, used in pychology/psycho linguistics
Greenwald et al. (1998)

P> Measures association between word groups
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Bias in Embeddings

WEAT

» Two sets of target words (X, Y)

> E.g., programmer/scientist/engineer vs. nurse/teacher/librarian
» Two sets of attribute words (A, B)

» E.g., man/male vs. woman/female
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Bias in Embeddings

WEAT

» Two sets of target words (X, Y)
> E.g., programmer/scientist/engineer vs. nurjse/teacher/librarian

N/ malE¥s. wom

» Null hypothesis: Target word sets are equally similar to both attribute words
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Bias in Embeddings

WEAT

» Two sets of target words (X, Y)
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Bias in Embeddings

WEAT

s(X,Y,A,B) = > s(z,A4,B)=> s(y,A,B)

zeX yey

s(w,A,B) = ‘2’ Z cos(W, @) — —— Z cos(, b)

acA ‘ | beB

In other words, s(w, A, B) measures the association of w with the attribute, and
s(X, Y, A, B) measures the differential association of the two sets of target words
with the attribute. (Caliskan et al., 2017, 184)
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Bias in Embeddings

Example

@ Expected, inoffensive bias

> Flowers (aster, clover, ..) vs. Insects (ant, caterpillar, ...)
> Pleasant (caress, freedom, ..) vs. Unpleasant (abuse, crash, ..)

@ Offensive bias

> Science (science, technology, ..) vs. Arts (poetry, art, ..)
> Male (brother, father, ..) vs. Female (sister, mother, ...)
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Bias in Embeddings

Exercise

The word sets used by Caliskan et al., 2017 can be found here:

https://www.science.org/action/downloadSupplement?doi=10.1126%2Fscience.aal4230&file=caliskan-sm.pdf,
two files are stored in /teaching/summer-2023/sprachverarbeitung/data/weatl.txt resp. weat8.txt.

> lIdentify (small) sets of words for which you expect bias in the embeddings you've trained last week. Verify that the
words actually are in the embeddings.

» Perform a word embeddings association test.
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