Recap

Word2Vec

- Method to represent words in vector space
- Train a neural network on a certain task, extract word weights
- Tasks: Skip-gram and continuous bag of words

Word2Vec (Missing Details)

Sprachverarbeitung (VL + Ü)

Nils Reiter

June 27, 2023

Two tasks

Continuous Bag of Words (CBOW)

Context words used to predict a single word

Skip-gram

- Intuition: "a word is likely to occur near the target if its embedding is similar to the target embedding"

Skip-gram

- Intuition: "a word is likely to occur near the target if its embedding is similar to the target embedding"
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $0+\mid \vec{t}, \vec{c})$
- Classifier training requires a loss function (as in logistic regression)

Loss Function

- Maximize $\frac{d}{d(t \mid t, c)}$ (positive samples)
$-\operatorname{Minimize} \underset{T}{p\left(+\mid t, c_{n}\right)}$ (negative samples) $\Rightarrow \operatorname{Max} . p\left(-\mid t, c_{n}\right)$

Loss Function

- Maximize $p(+\mid t, c)$ (positive samples)
- Minimize $p\left(+\mid t, c_{n}\right)$ (negative samples)

Loss Function

- Maximize $p(+\mid t, c)$ (positive samples)
- Minimize $p\left(+\mid t, c_{n}\right)$ (negative samples)

$$
J(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

(θ : Concatenation of all $\vec{t}, \vec{c}, \vec{c}_{n}$)

- How to calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?
- Where to we get negative samples?

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?

- Metric that takes two vectors and returns a similarity score
- Linear algebra:-dot product (»Skalarprodukt«)

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?

- Metric that takes two vectors and returns a similarity score
- Linear algebra: dot product (»Skalarprodukt«)

$$
\vec{a} \cdot \vec{b}=\sum_{i=1}^{N} a_{i} b_{i}
$$

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?
Dot product

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?
Dot product

$$
\begin{aligned}
\vec{a} & =[0,1,1] \\
\vec{b} & =[1,1,0.5] \\
\vec{a} \cdot \vec{b} & =1.5
\end{aligned}
$$

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?
The Logistic Function

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e} e^{c / 0}-\operatorname{dot} \text { photic function } \\
& p(-\mid t, c)=1-p(+\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

How to Calculate $p(+\mid t, c)$ and $p\left(-\mid t, c_{n}\right)$?

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}} \\
& p(-\mid t, c)=1-p(+\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}
\end{aligned}
$$

More than one context word

Assumption: They are independent, allowing multiplication

$$
p\left(+\mid t, c_{1: k}\right)=\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}}
$$

Where to we get negative samples?

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

Where to we get negative samples?

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple t, c we add k negative tuples
- Negative tuple $\left(t, c_{n}\right.$), with c_{n} randomly selected (and $t \neq c_{n}$)

Where to we get negative samples?

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
- $p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$
- This leads to rare words being more frequently selected, frequent words less

Where to we get negative samples?

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)
- Select noise words according to their weighted frequency
- $p_{\alpha}(w)=\frac{\operatorname{count}(w)^{\alpha}}{\sum_{w^{\prime}} \operatorname{count}\left(w^{\prime}\right)^{\alpha}}$
- This leads to rare words being more frequently selected, frequent words less
- Two new 'parameters' on this slide: k and α
- They have a different status than θ (the parameters we want to learn)
- Therefore: Hyperparameters

Remarks and observations

- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation

Remarks and observations

- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation
- Matrices
- Conceptually, it is not hugely important how the embeddings are stored in detail
- But for the implementation because of efficiency
- All target vectors are stored in matrix W (word matrix)
- All context vectors are stored in matrix C (context matrix)
- $\theta=(W, C)$

Section 1

Bias in Embeddings

Bias in Embeddings

- Important discussion: How biased are embeddings?
- And related: How can we measure it?

Bias in Embeddings

- Important discussion: How biased are embeddings?
- And related: How can we measure it?
- WEAT: Word-Embedding Association Test
- Inspired by Implicit Association Test, used in pychology/psycho linguistics
- Measures association between word groups

WEAT

- Two sets of target words (X, Y)
- E.g., programmer/scientist/engineer vs. nurse/teacher/librarian
- Two sets of attribute words (A, B)
- E.g., man/male vs. woman/female

WEAT

- Two sets of target words (X, Y)
- E.g., programmer/scientist/engineer vs. nurse/teacher/librarian
- Two sets of attribute words (A, B)
- E.g., man/male vs. woman/female
- Null hypothesis: Target word sets are equally similar to both attribute words

WEAT

- Two sets of target words (X, Y)
- E.g., programmer/scientist/engineer vs. nurse/teacher/librarian
- Two sets of attribute words (A, B)
- E.g., man/male vs. woman/female
- Null hypothesis: Target word sets are equally similar to both attribute words

$$
\begin{aligned}
s(X, Y, A, B) & =\sum_{x \in X} s(x, A, B)-\sum_{y \in Y} s(y, A, B) \\
s(w, A, B) & =\frac{1}{|A|} \sum_{a \in A} \cos (\vec{w}, \vec{a})-\frac{1}{|B|} \sum_{b \in B} \cos (\vec{w}, \vec{b})
\end{aligned}
$$

$$
\begin{aligned}
s(X, Y, A, B) & =\sum_{x \in X} s(x, A, B)-\sum_{y \in Y} s(y, A, B) \\
s(w, A, B) & =\frac{1}{|A|} \sum_{a \in A} \cos (\vec{w}, \vec{a})-\frac{1}{|B|} \sum_{b \in B} \cos (\vec{w}, \vec{b})
\end{aligned}
$$

In other words, $s(w, A, B)$ measures the association of w with the attribute, and $s(X, Y, A, B)$ measures the differential association of the two sets of target words with the attribute.
(Caliskan et al., 2017, 184)

Example

(1) Expected, inoffensive bias

- Flowers (aster, clover, ...) vs. Insects (ant, caterpillar, ...)
- Pleasant (caress, freedom, ...) vs. Unpleasant (abuse, crash, ...)
(2) Offensive bias
- Science (science, technology, ...) vs. Arts (poetry, art, ...)
- Male (brother, father, ...) vs. Female (sister, mother, ...)

Exercise

The word sets used by Caliskan et al., 2017 can be found here:
https://www.science.org/action/downloadSupplement?doi=10.1126\% 2 Fscience.aal4230\&file=caliskan-sm.pdf, two files are stored in /teaching/summer-2023/sprachverarbeitung/data/weat1.txt resp. weat8.txt.

- Identify (small) sets of words for which you expect bias in the embeddings you've trained last week. Verify that the words actually are in the embeddings.
- Perform a word embeddings association test.

