Recap

Word2Vec

- Method to represent words in vector space
- Requires large quantity of raw text
- Pre-trained embeddings can be shared
- Embeddings capture (some aspects of) lexical meaning

Large Language Models Sprachverarbeitung (VL + Ü)

Nils Reiter

June 29, 2023

Group Exercise

- 1. In which situations have you talked about ChatGPT (& co)?
- 2. For which tasks can it be put to use?
- 3. For which tasks *should* it not be used? Why not?

Brief history of Computational Linguistics II

- ▶ 1984: First corpus-based commercial MT system
- 1992: Study programs established in Germany (Saarbrücken/Stuttgart)
- 2011: IBM Watson beats two humans in Jeopardy YouTube / Apples Siri launched
- 2013: Word embeddings (e.g., word2vec)
- 2017: Launch of the DeepL Translator (a Cologne-based company)
- 2018: Transformer models: BERT
- 2022: ChatGPT Chat.openai.com
 - laces Yes, we need to talk about ChatGPT laces

Nagao (1984)

Mikolov et al. (2013)

Devlin et al. (2019)

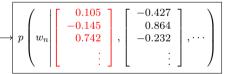
Large Language Models

- Term LLM used in contrast to classical language models
- ► Family of »transformer models«: BERT, GPT, ...
 - BERT by Google, GPT-X by OpenAI
 - BERT model can be downloaded and used locally
- Huge amount of training data (e.g., the web)
- High computing costs
 - »Just how much does it cost to train a model? Two correct answers are >depends< and >a lot<.« Sharir et al. (2020, 1)</p>
 - BERT w/ 340 million parameters: \$ 10k / \$ 200k

Key Idea 1: Learned Representation

Classical ML: Instances are represented by their features

- Neural ML
 - Words/texts are represented by vectors
 - Vectors are learned representations
 - I.e., vectors are optimised for some task, usually filling gaps in texts


Key Idea 1: Learned Representation

Classical ML: Instances are represented by their features

- Neural MI
 - Words/texts are represented by vectors
 - Vectors are learned representations
 - I.e., vectors are optimised for some task, usually filling gaps in texts

Linguistic context properties

Properties have been learned from data

Key Idea 2: Not every token is equally important

- »Attention Is All You Need«
- ▶ Idea: During training, model learns which tokens are relevant to predict the output
 - Additional parameters to train ...

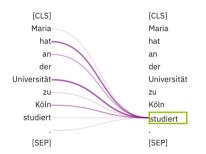


Figure: Attention given when predicting the word »studiert«. Screenshot taken from

https://huggingface.co/spaces/exbert-project/exbert

Vaswani et al. (2017)

Key Idea 3: Training Process Split into two Phases

- ▶ Traditionally (Naive Bayes, Decision tree, ...), we train a model and are done
- Transformer architecture:
 - Pre-Training: Model is trained on huge data set to do generic task
 - ▶ Fine-Tuning: We continue training the model, but on the task we are actually interested in (!)

Key Idea 3: Training Process Split into two Phases BERT Training Tasks

Masked Language Modeling (MLM)

- Sentence-wise
- \blacktriangleright 15% of the tokens are »masked« by a special token
- Model predicts these, having access to all other tokens

Key Idea 3: Training Process Split into two Phases BERT Training Tasks

Masked Language Modeling (MLM)

- Sentence-wise
- ▶ 15% of the tokens are »masked« by a special token
- Model predicts these, having access to all other tokens

Next sentence prediction (NSP)

- Two (masked) sentences are concatenated
- Model has to predict wether second sentence follows on the first or not

Key Idea 4: Scale Up

▶ With the transformer recipe, many parameters have simply been scaled up

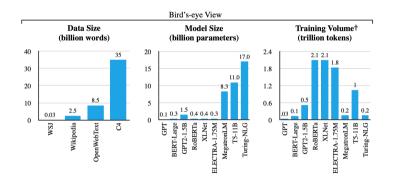


Figure: Statistics about NLP models (Sharir et al., 2020; Wikipedia)

Key Idea 4: Scale Up

With the transformer recipe, many parameters have simply been scaled up

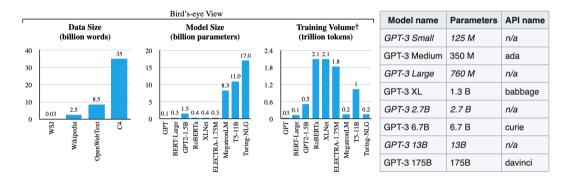


Figure: Statistics about NLP models (Sharir et al., 2020; Wikipedia)

Key Idea 4: Scale Up Large Numbers are Complicated

Kurze Skala		Lange Skala			Zehner-	Vorsätze
Name	Systematik	Chuquet	mit <i>-arde</i>	Systematik	potenz	vorsalze
[Einheit]	Tausend ^{1 - 1}	[Einheit]	[Einheit]	Million ⁰	10 ⁰	[Einheit]
Tausend	Tausend ^{1 + 0}	Tausend	Tausend	Million ^{1/2}	10 ³	Kilo
Million	Tausend ^{1 + 1}	Million	Million	Million ¹	10 ⁶	Mega
Billion	Tausend ^{1 + 2}	Tausend Millionen	Milliarde	Million ^{1½}	10 ⁹	Giga
Trillion	Tausend ^{1 + 3}	Billion	Billion	Million ²	10 ¹²	Tera
Quadr illion	Tausend ^{1 + 4}	Tausend Billionen	Billiarde	Million ^{21/2}	10 ¹⁵	Peta
Quint illion	Tausend ^{1 + 5}	Trillion	Trillion	Million ³	10 ¹⁸	Exa
Sextillion	Tausend ^{1 + 6}	Tausend Trillionen	Trilliarde	Million ^{3½}	10 ²¹	Zetta
Septillion	Tausend ^{1 + 7}	Quadrillion	Quadrillion	Million ⁴	10 ²⁴	Yotta

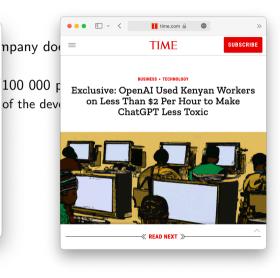
Key Ideas

- Input representation trained
- Attention to identify relevant tokens
- Two phases for training processes
- Scale up

- »OpenAl« is just a name nothing this company does is >open«
 - I.e., we don't know many details
- Running ChatGPT is expensive (rumors: \$ 100 000 per day)
 - Usually, running a service costs a fraction of the development/training cost

- »OpenAl« is just a name nothing this company does is >open«
 - I.e., we don't know many details
- Running ChatGPT is expensive (rumors: \$ 100 000 per day)
 - Usually, running a service costs a fraction of the development/training cost
- There are multiple ugly sides

- »OpenAl« is just a name nothing this company doe =
 - I.e., we don't know many details
- Running ChatGPT is expensive (rumors: \$ 100 000 p
 - Usually, running a service costs a fraction of the deve
- There are multiple ugly sides


Cyberangriffe

Sicherheitsforscher kapern Bing-Chat

Mit technischen Tricks brachten Forscher eine KI dazu, sich als Pirat auszugeben, der Nutzer ausspioniert. Klingt schräg, könnte aber der Cyberangriff der Zukunft sein.

Von Eva Wolfangel

4. März 2023, 17:33 Uhr / 45 Kommentare / 🗔

>>

റ്റ

- »OpenAl« is just a name nothing this company does is >open«
 - I.e., we don't know many details
- Running ChatGPT is expensive (rumors: \$ 100 000 per day)
 - Usually, running a service costs a fraction of the development/training cost
- There are multiple ugly sides

ChatGPT predicts probable next words

- There is no model of the world behind it
- ▶ There is no factual knowledge or reasoning about anything behind it
- ▶ No one is able to guarantee, that the produced text is factually correct

Do we need legal regulation of »Al«, and if so, what exactly?

Section 1

Summary

Summary

