
Recap

▶ Large Language Models
▶ »Classical language models on steroids«
▶ Learned Representation
▶ Attention: Context tokens are not equally important
▶ Two-phase training process
▶ Scaling up data set sizes, processing power
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From a Logistic Regression to a Neuron

▶ Hypothesis function of logistic regression:

h(x) = 1

1 + e−(ax+b)

Maps one value to another (just like many other functions)

▶ Further parameterization:

h(x) = σ(ax + b) with σ(x) = 1

1 + e−x
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What is a Neural Network?

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)
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What is a Neural Network?
Straightforward to extend to multiple features

b

x1

x2

a1

a2

yσ

y = σ(a1x1 + a2x2 + b)

Figure: 1 neuron (with 2 features)
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What is a Neural Network?
Straightforward to extend to multiple features and multiple regression nodes

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

σ(b21 + w11x1 + w21x2)

σ(b22 + w12x1 + w22x2)

σ(b23 + w13x1 + w23x2)

σ(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
σ: activation function (e.g., logistic)
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Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning
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Feed-Forward Neural Networks

▶ The above is called a ›feed-forward neural network‹ (FFNN)
▶ Information is fed only in forward direction

▶ Configuration choices
▶ Activation function (next slide)
▶ Layer size: Number of neurons in each layer
▶ Number of layers
▶ Loss function
▶ Optimizer

▶ Training choices
▶ Epochs/batches
▶ Training status displays
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Feed-Forward Neural Networks
Activation Functions

▶ All neurons of one layer have the same
▶ Popular choices:
logistic y = σ(x) = 1

1+e−x – ›squashes‹ everything to a value between 0 and 1
▶ E.g.: f([−0.5, 0.5, 1]) = [0.38, 0.62, 0.73]

relu y = max(0, x) – Makes everything negative to 0
▶ E.g.: f([−0.5, 0.5, 1]) = [0, 0.5, 1]

softmax Scales an entire vector such that elements sum to 1 (probability distribution)
▶ E.g.: f([−0.5, 0.5, 1]) = [0.12, 0.33, 0.55]
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Training: »Backpropagation«

▶ Similar to gradient descent
▶ But

▶ A lot more parameters
▶ Weight updates need to be distributed over the layers
▶ Because of multiple layers: Vanishing gradients

▶ Backpropagation involves a lot of multiplication
▶ Factors are between zero and one
⇒ Numbers get very small very quickly

▶ Training choice: Batches and epochs
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Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)
▶ Gradient Descent

▶ Apply θ to all training instances
▶ Calculate loss over entire data set

▶ Stochastic Gradient Descent
▶ Data set in random order
▶ Calculate loss for every single instance, then update weights

Batch size: Number of items after which weights are updated
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Training a Feedforward Neural Network II
When to stop the training
▶ Logistic regression: Stop in minimum
▶ In theory, that’s what we want
▶ In practice

▶ We usually are not exactly in the minimum
▶ It’s not important to be exactly in the minimum

⇒ Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights
epochs Number of iterations over all instances

Neural Networks 12 / 23



Dimensions

▶ Dimensionality of neural networks major source of confusion

▶ In this example
▶ Single input object represented with two numbers (= 1D)
▶ Output is a single number

▶ Dimensions:
▶ Input data set: 2D (because multiple instances)
▶ Output data: 1D (a list of single numbers)
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Section 1

Practical Deep Learning



Practical Deep Learning

Libraries
▶ Most developments take place in Python
▶ Deep learning in python rests on several independent libraries

▶ numpy Provides efficient matrices and arrays
▶ pandas Convenient working with tabular data (inspired by data.frames in R)
▶ scikit-learn ›Classical‹ machine learning (not deep learning)
▶ tensorflow Basic, low-level machine learning and math
▶ keras High-level deep learning (built on top of tensorflow)
▶ pytorch Newer alternative to tensorflow
▶ transformers Library for transformer models by Hugging Face

▶ Documentation is fragmented – important links:
▶ https://keras.io/api/
▶ https://pandas.pydata.org/docs/reference/index.html
▶ https://scikit-learn.org/stable/modules/classes.html
▶ https://huggingface.co/docs/transformers/index
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Practical Deep Learning

keras

▶ High-level Python API for deep learning
1. Adaptations exist for R, Java, JavaScript, …

▶ Built on top of tensorflow

▶ Pattern
1. Loading and preprocessing data
2. Layout the network
3. Set hyper parameters
4. Run training
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Practical Deep Learning

Configuration
▶ Sequential API: Linear topology of layers
▶ Functional API: Graph of layers

Listing 1: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)

Listing 2: Functional API
1 # model layout
2 in = ...
3 out = Dense(10)(in)
4 model = Model(inputs=in,
5 outputs=out)
6
7 # hyperparameter specification
8 model.compile(loss=...,
9 optimizer=...)

10
11 # training
12 model.fit(..., epochs=...,
13 batch_size=...)
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Practical Deep Learning

Configuration
Two most basic layer types

▶ Dense: »Just your regular densely-connected NN layer.«
▶ https://keras.io/api/layers/core_layers/dense/

1 layer = Dense(3, # number of neurons
2 activation = activations.sigmoid, # activation function
3 name = "dense layer 7" # useful for debugging/visualisation
4 ... # more options, see docs
5 )

▶ Input: Marks layers to accept data
▶ https://keras.io/api/layers/core_layers/input/

1 layer = Input(shape=(15,) # number of input dimensions/features
2 name = "input layer", # useful for debugging/visualisation
3 ... # see docs
4 )
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Practical Deep Learning

Shape

▶ Description of the dimensionality of the data
▶ A vector of numbers, giving the number of elements for each dimension
▶ Python tuple

▶ List with fixed length: x = (5,3,1) #a tuple
 Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)
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Practical Deep Learning

Example

1
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x1 x2 y
0 0 0.86169636
1 0 0.87786007
1 1 0.891605

10 10 0.90814614
...

...
...

Figure: Neural network with randomly initialized weights
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5 # setup the model architecture
6 model = Sequential()
7 model.add(InputLayer(input_shape=(2,)))
8 model.add(Dense(3, activation="sigmoid"))
9 model.add(Dense(1, activation="sigmoid"))

10
11 model.compile() # compile it
12
13 w1 = [ # weights between neurons
14 np.array([[0.1,0.6,0.7],[0.2,0.8,1]]),
15 # bias terms
16 np.array([0.5,0.8,0.5]) ]
17
18 w2 = [ # weights between neurons
19 np.array([[0.3],[0.3],[0.7]]),
20 # bias terms
21 np.array([1]) ]
22
23 model.layers[0].set_weights(w1)
24 model.layers[1].set_weights(w2)
25
26 y = model.predict(np.array([[0,0]])) # generate predictions
27 print(y)

Neural network with manually
specified weights as above

on lehre.idh: simple-nn.py
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Exercise

▶ Task 1
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