
Recap

▶ Large Language Models
▶ »Classical language models on steroids«
▶ Learned Representation
▶ Attention: Context tokens are not equally important
▶ Two-phase training process
▶ Scaling up data set sizes, processing power

Neural Networks 1 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Neural Networks
Sprachverarbeitung (VL + Ü)

Nils Reiter

July 4, 2023

From a Logistic Regression to a Neuron

▶ Hypothesis function of logistic regression:

h(x) = 1

1 + e−(ax+b)

Maps one value to another (just like many other functions)

▶ Further parameterization:

h(x) = σ(ax + b) with σ(x) = 1

1 + e−x

Neural Networks 3 / 23

Nils Reiter

Nils Reiter

From a Logistic Regression to a Neuron

▶ Hypothesis function of logistic regression:

h(x) = 1

1 + e−(ax+b)

Maps one value to another (just like many other functions)
▶ Further parameterization:

h(x) = σ(ax + b) with σ(x) = 1

1 + e−x

Neural Networks 3 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

What is a Neural Network?

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

What is a Neural Network?

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

What is a Neural Network?
Example

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

What is a Neural Network?
Example

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

What is a Neural Network?
Example

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

What is a Neural Network?
Example

bx a yf

y = σ(ax + b)

layer 1 layer 2 layer 3

activation function,
e.g.: σ(x) = 1

1+e−x

weight for x in
layer 2, neuron 1

bias term

lo
gi

st
ic

decided during
configuration

0.5 1

learned during
training

5

Test/application input

σ(0.5× 5 + 1)
= σ(3.5)
= 0.03

Test prediction

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Neural Networks 4 / 23

What is a Neural Network?
Straightforward to extend to multiple features

b

x1

x2

a1

a2

yσ

y = σ(a1x1 + a2x2 + b)

Figure: 1 neuron (with 2 features)

Neural Networks 5 / 23

Nils Reiter

What is a Neural Network?
Straightforward to extend to multiple features

b

x1

x2

a1

a2

yσ

y = σ(a1x1 + a2x2 + b)

Figure: 1 neuron (with 2 features)

Neural Networks 5 / 23

What is a Neural Network?
Straightforward to extend to multiple features and multiple regression nodes

b31

b21

w 23
11

b22
w23
21

b23

w
23
31

x1

w12
11

w12
12

w 1213x2

w
12
21

w12
22

w12
23

σ(b21 + w11x1 + w21x2)

σ(b22 + w12x1 + w22x2)

σ(b23 + w13x1 + w23x2)

σ(b31 + w11y21 + w21y22 + w31y23)

Figure: A simple neural network with 1 hidden layer

Notation
wkn

jm: Connection between neuron j in
layer k and neuron m in layer n
σ: activation function (e.g., logistic)

Neural Networks 6 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Neural Networks 7 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Neural Networks 7 / 23

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Neural Networks 7 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Prediction Model: Forward Pass

▶ If we have all the weights, bias terms, numbers of neurons and layers, we can compute
the output of the network
▶ Conceptually: Applying functions in sequence: y = f3(f2(f1(x))) (one per layer)

▶ Practically, a lot of the computation happens in matrices
▶ Hidden layer

▶ Weights from input to hidden: W1,2 =

[
w11 w12 w13

w21 w22 w23

]
▶ Biases B2 = (b21, b22, b23)

▶ Hidden layer computation
▶ f2(X) = σ((W⊺

1,2X) + B2)

▶ Deep learning involves a lot of matrix multiplication
▶ GPUs are highly optimized for this
▶ Hint: Gaming-GPUs that support CUDA are also usable for deep learning

Neural Networks 7 / 23

Feed-Forward Neural Networks

▶ The above is called a ›feed-forward neural network‹ (FFNN)
▶ Information is fed only in forward direction

▶ Configuration choices
▶ Activation function (next slide)
▶ Layer size: Number of neurons in each layer
▶ Number of layers
▶ Loss function
▶ Optimizer

▶ Training choices
▶ Epochs/batches
▶ Training status displays

Neural Networks 8 / 23

Feed-Forward Neural Networks

▶ The above is called a ›feed-forward neural network‹ (FFNN)
▶ Information is fed only in forward direction

▶ Configuration choices
▶ Activation function (next slide)
▶ Layer size: Number of neurons in each layer
▶ Number of layers
▶ Loss function
▶ Optimizer

▶ Training choices
▶ Epochs/batches
▶ Training status displays

Neural Networks 8 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Feed-Forward Neural Networks
Activation Functions

▶ All neurons of one layer have the same
▶ Popular choices:
logistic y = σ(x) = 1

1+e−x – ›squashes‹ everything to a value between 0 and 1
▶ E.g.: f([−0.5, 0.5, 1]) = [0.38, 0.62, 0.73]

relu y = max(0, x) – Makes everything negative to 0
▶ E.g.: f([−0.5, 0.5, 1]) = [0, 0.5, 1]

softmax Scales an entire vector such that elements sum to 1 (probability distribution)
▶ E.g.: f([−0.5, 0.5, 1]) = [0.12, 0.33, 0.55]

Neural Networks 9 / 23

Nils Reiter

Nils Reiter

Feed-Forward Neural Networks
Activation Functions

▶ All neurons of one layer have the same
▶ Popular choices:
logistic y = σ(x) = 1

1+e−x – ›squashes‹ everything to a value between 0 and 1
▶ E.g.: f([−0.5, 0.5, 1]) = [0.38, 0.62, 0.73]

relu y = max(0, x) – Makes everything negative to 0
▶ E.g.: f([−0.5, 0.5, 1]) = [0, 0.5, 1]

softmax Scales an entire vector such that elements sum to 1 (probability distribution)
▶ E.g.: f([−0.5, 0.5, 1]) = [0.12, 0.33, 0.55]

Neural Networks 9 / 23

Nils Reiter

Nils Reiter

Feed-Forward Neural Networks
Activation Functions

▶ All neurons of one layer have the same
▶ Popular choices:
logistic y = σ(x) = 1

1+e−x – ›squashes‹ everything to a value between 0 and 1
▶ E.g.: f([−0.5, 0.5, 1]) = [0.38, 0.62, 0.73]

relu y = max(0, x) – Makes everything negative to 0
▶ E.g.: f([−0.5, 0.5, 1]) = [0, 0.5, 1]

softmax Scales an entire vector such that elements sum to 1 (probability distribution)
▶ E.g.: f([−0.5, 0.5, 1]) = [0.12, 0.33, 0.55]

Neural Networks 9 / 23

Training: »Backpropagation«

▶ Similar to gradient descent
▶ But

▶ A lot more parameters
▶ Weight updates need to be distributed over the layers
▶ Because of multiple layers: Vanishing gradients

▶ Backpropagation involves a lot of multiplication
▶ Factors are between zero and one
⇒ Numbers get very small very quickly

▶ Training choice: Batches and epochs

Neural Networks 10 / 23

Training: »Backpropagation«

▶ Similar to gradient descent
▶ But

▶ A lot more parameters
▶ Weight updates need to be distributed over the layers
▶ Because of multiple layers: Vanishing gradients

▶ Backpropagation involves a lot of multiplication
▶ Factors are between zero and one
⇒ Numbers get very small very quickly

▶ Training choice: Batches and epochs

Neural Networks 10 / 23

Training a Feedforward Neural Network I

Stochastic Gradient Descent (SGD)
▶ Gradient Descent

▶ Apply θ to all training instances
▶ Calculate loss over entire data set

▶ Stochastic Gradient Descent
▶ Data set in random order
▶ Calculate loss for every single instance, then update weights

Batch size: Number of items after which weights are updated

Neural Networks 11 / 23

Training a Feedforward Neural Network II
When to stop the training
▶ Logistic regression: Stop in minimum
▶ In theory, that’s what we want
▶ In practice

▶ We usually are not exactly in the minimum
▶ It’s not important to be exactly in the minimum

⇒ Fixed number of iterations over the data set (= number of epochs)

Batches vs. Epochs

batch Number of instances used before updating weights
epochs Number of iterations over all instances

Neural Networks 12 / 23

Dimensions

▶ Dimensionality of neural networks major source of confusion

▶ In this example
▶ Single input object represented with two numbers (= 1D)
▶ Output is a single number

▶ Dimensions:
▶ Input data set: 2D (because multiple instances)
▶ Output data: 1D (a list of single numbers)

Neural Networks 13 / 23

Dimensions

▶ Dimensionality of neural networks major source of confusion
▶ In this example

▶ Single input object represented with two numbers (= 1D)
▶ Output is a single number

▶ Dimensions:
▶ Input data set: 2D (because multiple instances)
▶ Output data: 1D (a list of single numbers)

Neural Networks 13 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Section 1

Practical Deep Learning

Practical Deep Learning

Libraries
▶ Most developments take place in Python
▶ Deep learning in python rests on several independent libraries

▶ numpy Provides efficient matrices and arrays
▶ pandas Convenient working with tabular data (inspired by data.frames in R)
▶ scikit-learn ›Classical‹ machine learning (not deep learning)
▶ tensorflow Basic, low-level machine learning and math
▶ keras High-level deep learning (built on top of tensorflow)
▶ pytorch Newer alternative to tensorflow
▶ transformers Library for transformer models by Hugging Face

▶ Documentation is fragmented – important links:
▶ https://keras.io/api/
▶ https://pandas.pydata.org/docs/reference/index.html
▶ https://scikit-learn.org/stable/modules/classes.html
▶ https://huggingface.co/docs/transformers/index

Neural Networks 15 / 23

https://keras.io/api/
https://pandas.pydata.org/docs/reference/index.html
https://scikit-learn.org/stable/modules/classes.html
https://huggingface.co/docs/transformers/index
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Practical Deep Learning

Libraries
▶ Most developments take place in Python
▶ Deep learning in python rests on several independent libraries

▶ numpy Provides efficient matrices and arrays
▶ pandas Convenient working with tabular data (inspired by data.frames in R)
▶ scikit-learn ›Classical‹ machine learning (not deep learning)
▶ tensorflow Basic, low-level machine learning and math
▶ keras High-level deep learning (built on top of tensorflow)
▶ pytorch Newer alternative to tensorflow
▶ transformers Library for transformer models by Hugging Face

▶ Documentation is fragmented – important links:
▶ https://keras.io/api/
▶ https://pandas.pydata.org/docs/reference/index.html
▶ https://scikit-learn.org/stable/modules/classes.html
▶ https://huggingface.co/docs/transformers/index

Neural Networks 15 / 23

https://keras.io/api/
https://pandas.pydata.org/docs/reference/index.html
https://scikit-learn.org/stable/modules/classes.html
https://huggingface.co/docs/transformers/index

Practical Deep Learning

keras

▶ High-level Python API for deep learning
1. Adaptations exist for R, Java, JavaScript, …

▶ Built on top of tensorflow

▶ Pattern
1. Loading and preprocessing data
2. Layout the network
3. Set hyper parameters
4. Run training

Neural Networks 16 / 23

Practical Deep Learning

keras

▶ High-level Python API for deep learning
1. Adaptations exist for R, Java, JavaScript, …

▶ Built on top of tensorflow
▶ Pattern

1. Loading and preprocessing data
2. Layout the network
3. Set hyper parameters
4. Run training

Neural Networks 16 / 23

Nils Reiter

Practical Deep Learning

Configuration
▶ Sequential API: Linear topology of layers
▶ Functional API: Graph of layers

Listing 1: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)

Listing 2: Functional API
1 # model layout
2 in = ...
3 out = Dense(10)(in)
4 model = Model(inputs=in,
5 outputs=out)
6
7 # hyperparameter specification
8 model.compile(loss=...,
9 optimizer=...)

10
11 # training
12 model.fit(..., epochs=...,
13 batch_size=...)

Neural Networks 17 / 23

Practical Deep Learning

Configuration
▶ Sequential API: Linear topology of layers
▶ Functional API: Graph of layers

Listing 3: Sequential API
1 # model layout
2 model = Sequential()
3 model.add(...)
4 model.add(...)
5
6 # hyperparameter specification
7 model.compile(loss=...,
8 optimizer=...)
9

10 # training
11 model.fit(..., epochs=...,
12 batch_size=...)

Listing 4: Functional API
1 # model layout
2 in = ...
3 out = Dense(10)(in)
4 model = Model(inputs=in,
5 outputs=out)
6
7 # hyperparameter specification
8 model.compile(loss=...,
9 optimizer=...)

10
11 # training
12 model.fit(..., epochs=...,
13 batch_size=...)

Neural Networks 17 / 23

Practical Deep Learning

Configuration
Two most basic layer types

▶ Dense: »Just your regular densely-connected NN layer.«
▶ https://keras.io/api/layers/core_layers/dense/

1 layer = Dense(3, # number of neurons
2 activation = activations.sigmoid, # activation function
3 name = "dense layer 7" # useful for debugging/visualisation
4 ... # more options, see docs
5)

▶ Input: Marks layers to accept data
▶ https://keras.io/api/layers/core_layers/input/

1 layer = Input(shape=(15,) # number of input dimensions/features
2 name = "input layer", # useful for debugging/visualisation
3 ... # see docs
4)

Neural Networks 18 / 23

https://keras.io/api/layers/core_layers/dense/
https://keras.io/api/layers/core_layers/input/

Practical Deep Learning

Shape

▶ Description of the dimensionality of the data
▶ A vector of numbers, giving the number of elements for each dimension
▶ Python tuple

▶ List with fixed length: x = (5,3,1) #a tuple
 Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)

Neural Networks 19 / 23

Practical Deep Learning

Shape

▶ Description of the dimensionality of the data
▶ A vector of numbers, giving the number of elements for each dimension
▶ Python tuple

▶ List with fixed length: x = (5,3,1) #a tuple
 Tuple with one element printed as (5,) or 5

1 x = np.zeros(5) # array([0., 0., 0., 0., 0.])
2 x.shape # returns (5,)
3 x = np.zeros((3,5))
4 # array([[0., 0., 0., 0., 0.],
5 # [0., 0., 0., 0., 0.],
6 # [0., 0., 0., 0., 0.]])
7 x.shape # returns (3,5)

Neural Networks 19 / 23

Practical Deep Learning

Example

1

0.5

0.3

0.8
0.3

0.5

0.
7

x1

x2

0.1

0.6

0.7

0.
2

0.8

1

x1 x2 y
0 0 0.86169636
1 0 0.87786007
1 1 0.891605

10 10 0.90814614
...

...
...

Figure: Neural network with randomly initialized weights

Neural Networks 20 / 23

5 # setup the model architecture
6 model = Sequential()
7 model.add(InputLayer(input_shape=(2,)))
8 model.add(Dense(3, activation="sigmoid"))
9 model.add(Dense(1, activation="sigmoid"))

10
11 model.compile() # compile it
12
13 w1 = [# weights between neurons
14 np.array([[0.1,0.6,0.7],[0.2,0.8,1]]),
15 # bias terms
16 np.array([0.5,0.8,0.5])]
17
18 w2 = [# weights between neurons
19 np.array([[0.3],[0.3],[0.7]]),
20 # bias terms
21 np.array([1])]
22
23 model.layers[0].set_weights(w1)
24 model.layers[1].set_weights(w2)
25
26 y = model.predict(np.array([[0,0]])) # generate predictions
27 print(y)

Neural network with manually
specified weights as above

on lehre.idh: simple-nn.py

Section 2

Exercise

Exercise

Exercise

▶ Task 1

Neural Networks 23 / 23

	Practical Deep Learning
	Exercise

