Recap

Figure: Neural network with randomly initialized weights

Fragerunde vor der Klausur

Sprachverarbeitung (VL + Ü)

Nils Reiter

July 6, 2023

Fragen per Mail

- Difference between probabilities und likelihoods?
- Information gain vs. entropy
- What's the »number of numbers«?
- On the slides in the context of language models
- In the python script on deep learning
- Will »area under curve« be in the exam? It was skipped in the lecture
- What's B and N in Lidstone's Law?

Lidstone's Law

$$
p\left(\left\langle w_{1}, \ldots w_{n}\right\rangle\right)=\frac{c\left(\left\langle w_{1}, \ldots w_{n}\right\rangle\right)+\lambda}{N+B \lambda}
$$

- B: Number of different n-grams (i.e., n-gram types)
- λ : Parameter set to control how much mass remains for OOV words
- Typical setting: $\lambda=\frac{1}{2}$ (for reasons see Manning/Schütze, 1999, 204)

Lidstone's Law

Example

- Corpus with 1000 words
- We look at bigrams $(n=2)$
\rightarrow Corpus has 999 bigrams ($=N$)
- Corpus has 300 different bigrams ($=$ bigram types $=B$)

Lidstone's Law

Example

- Corpus with 1000 words
- We look at bigrams $(n=2)$
\rightarrow Corpus has 999 bigrams ($=N$)
- Corpus has 300 different bigrams ($=$ bigram types $=B$)
- Bigram »morning sun « appears 30 times
- Base probability (without smooting): $\frac{30}{999}=0.03003 \simeq 3 \%$

Lidstone's Law

Example

- Corpus with 1000 words
- We look at bigrams $(n=2)$
\rightarrow Corpus has 999 bigrams ($=N$)
- Corpus has 300 different bigrams ($=$ bigram types $=B$)
- Bigram »morning sun« appears 30 times
- Base probability (without smooting): $\frac{30}{999}=0.03003 \simeq 3 \%$
- Smoothed probability $(\mathrm{w} / \lambda=1): \frac{30+1}{999+300 \times 1}=0.02386451 \simeq 2.4 \%$

Lidstone's Law

Example

- Corpus with 1000 words
- We look at bigrams $(n=2)$
\rightarrow Corpus has 999 bigrams ($=N$)
- Corpus has 300 different bigrams ($=$ bigram types $=B$)
- Bigram »morning sun« appears 30 times
- Base probability (without smooting): $\frac{30}{909}=0.03003 \simeq 3 \%$
- Smoothed probability $(\mathrm{w} / \lambda=1): \frac{30+1}{999+300 \times 1}=0.02386451 \simeq 2.4 \%$
- Smoothed probability $\left(\mathrm{w} / \lambda=\frac{1}{2}\right): \frac{30+\frac{1}{2}}{999+300 \times \frac{1}{2}}=0.02654482 \simeq 2.7 \%$

Lidstone's Law

Example

- Corpus with 1000 words
- We look at bigrams $(n=2)$
\rightarrow Corpus has 999 bigrams $(=N)$
- Corpus has 300 different bigrams ($=$ bigram types $=B$)
- Bigram »morning sun« appears 30 times
- Base probability (without smooting): $\frac{30}{999}=0.03003 \simeq 3 \%$
- Smoothed probability $(\mathrm{w} / \lambda=1): \frac{30+1}{999+300 \times 1}=0.02386451 \simeq 2.4 \%$
- Smoothed probability $\left(w / \lambda=\frac{1}{2}\right): \frac{30+\frac{1}{2}}{999+300 \times \frac{1}{2}}=0.02654482 \simeq 2.7 \%$
- Smoothed probability $(w / \lambda=0.1): \frac{30+0.1}{999+300 \times 0.1}=0.0292517 \simeq 2.9 \%$

