
Recap

▶ Git: Open source software to manage versions
▶ Commit: One specific version that knows its predecessor
▶ Branch: Multiple different commits can have the same predecessor, allowing parallel

development
▶ Merging

▶ Re-integrate parallel development
▶ Mostly automatic, but sometimes not

Fortgeschrittene Programmierung (Java 2) 1 / 23



Section 1

Last Exercise



Last Exercise

Last Exercise
Lessons and Remarks

▶ Your GitHub username is not (automatically) your author name
▶ Commit date is fixed when you make the commit – not when you upload to GitHub

▶ Shows that many actual code additions were done this week (not last week, as was the idea)

▶ Never do a force push if you’re sharing the repository with others
▶ Never follow stackoverflow recommendations without understanding their consequences

▶ Some commits produce badly broken code (e.g, undeclared variable names)
▶ Never push things to the server that do not compile

▶ Pull requests: Coordination mechanism
▶ To the maintainer: “Hey, I’ve written some code, please pull it into the main project”

Fortgeschrittene Programmierung (Java 2) 3 / 23



Last Exercise

Last Exercise
Lessons and Remarks

▶ Your GitHub username is not (automatically) your author name
▶ Commit date is fixed when you make the commit – not when you upload to GitHub

▶ Shows that many actual code additions were done this week (not last week, as was the idea)
▶ Never do a force push if you’re sharing the repository with others

▶ Never follow stackoverflow recommendations without understanding their consequences

▶ Some commits produce badly broken code (e.g, undeclared variable names)
▶ Never push things to the server that do not compile

▶ Pull requests: Coordination mechanism
▶ To the maintainer: “Hey, I’ve written some code, please pull it into the main project”

Fortgeschrittene Programmierung (Java 2) 3 / 23



Last Exercise

Last Exercise
Lessons and Remarks

▶ Your GitHub username is not (automatically) your author name
▶ Commit date is fixed when you make the commit – not when you upload to GitHub

▶ Shows that many actual code additions were done this week (not last week, as was the idea)
▶ Never do a force push if you’re sharing the repository with others

▶ Never follow stackoverflow recommendations without understanding their consequences
▶ Some commits produce badly broken code (e.g, undeclared variable names)

▶ Never push things to the server that do not compile

▶ Pull requests: Coordination mechanism
▶ To the maintainer: “Hey, I’ve written some code, please pull it into the main project”

Fortgeschrittene Programmierung (Java 2) 3 / 23



Last Exercise

Last Exercise
Lessons and Remarks

▶ Your GitHub username is not (automatically) your author name
▶ Commit date is fixed when you make the commit – not when you upload to GitHub

▶ Shows that many actual code additions were done this week (not last week, as was the idea)
▶ Never do a force push if you’re sharing the repository with others

▶ Never follow stackoverflow recommendations without understanding their consequences
▶ Some commits produce badly broken code (e.g, undeclared variable names)

▶ Never push things to the server that do not compile
▶ Pull requests: Coordination mechanism

▶ To the maintainer: “Hey, I’ve written some code, please pull it into the main project”

Fortgeschrittene Programmierung (Java 2) 3 / 23



Section 2

Remotes



Remotes

Decentralized

▶ “Git is decentralized”: What does this mean exactly?

▶ No central server required
▶ A local git repository stores the entire history, all branches and tags
▶ Every clone of the repository has the entire history

▶ Offline working galore!

Fortgeschrittene Programmierung (Java 2) 5 / 23



Remotes

Decentralized

▶ “Git is decentralized”: What does this mean exactly?
▶ No central server required
▶ A local git repository stores the entire history, all branches and tags
▶ Every clone of the repository has the entire history

▶ Offline working galore!

Fortgeschrittene Programmierung (Java 2) 5 / 23



Remotes

Remotes

▶ Each repository can be associated with multiple ‘remotes’
▶ Usually, one remote is called ‘origin’

▶ clone makes a local clone and sets one remote to point to the source

▶ Merging works across remote repositories
▶ E.g., you can merge something from a remote branch into your local branch

Fortgeschrittene Programmierung (Java 2) 6 / 23



Remotes

Remotes

▶ Each repository can be associated with multiple ‘remotes’
▶ Usually, one remote is called ‘origin’

▶ clone makes a local clone and sets one remote to point to the source
▶ Merging works across remote repositories

▶ E.g., you can merge something from a remote branch into your local branch

Fortgeschrittene Programmierung (Java 2) 6 / 23



Remotes

Downloading stuff

▶ A branch can be set to ‘track’ a remote branch
▶ Typically, you want the branches to have the same name

▶ git fetch downloads all tracked branches to your local repository, but keeps your
working copy as it is

▶ git pull fetches the changes from the server and merges them into your working copy
▶ Merge conflicts can occur!

▶ git push pushes your local changes to the tracking branch on the server
▶ If the remote branch moved on, you’ll be forced to pull and merge first

Fortgeschrittene Programmierung (Java 2) 7 / 23



How to ask for technical Support Howto▶ You may need to write to various people to get technical support
▶ Take a moment to think before clicking “send”

Ensure that
▶ All relevant information is given (as far as you know)
▶ You use proper terminology (as far as you can)
▶ You make it easy for the other person

▶ E.g., by including information the other person might first need to look up
▶ The context is still conceivable

▶ I.e., click on reply instead of writing a new mail, keep the old mail text in there
▶ References in your text are clear

▶ For instance: “this exercise” is not a clear reference
▶ You’re concise – long e-mails tend to be put on the read-later-pile (which never happens)



How to ask for technical Support Howto▶ You may need to write to various people to get technical support
▶ Take a moment to think before clicking “send”

Ensure that
▶ All relevant information is given (as far as you know)
▶ You use proper terminology (as far as you can)
▶ You make it easy for the other person

▶ E.g., by including information the other person might first need to look up
▶ The context is still conceivable

▶ I.e., click on reply instead of writing a new mail, keep the old mail text in there
▶ References in your text are clear

▶ For instance: “this exercise” is not a clear reference
▶ You’re concise – long e-mails tend to be put on the read-later-pile (which never happens)



Session 4: Iterable and Iterators
Fortgeschrittene Programmierung (Java 2)

Nils Reiter
nils.reiter@uni-koeln.de

26. April 2023



Section 3

Introduction and Motivation



Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[5] = myArray[5] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Fortgeschrittene Programmierung (Java 2) 11 / 23

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[5] = myArray[5] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Fortgeschrittene Programmierung (Java 2) 11 / 23

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[5] = myArray[5] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Fortgeschrittene Programmierung (Java 2) 11 / 23

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Iterating

▶ Programs with only single variables are not very powerful
▶ Power comes from possibility to group things of the same type

▶ E.g., arrays: int[] myArray = new int[1,2,3,4,5,6,7,8,9];

▶ Arrays allow treating many things the same way, because they have a common name
▶ E.g.: myArray[5] = myArray[5] * 2;

▶ For this, we need a method to iterate over the elements of the array
▶ E.g.: for (int i = 0; i < myArray.length; i++) { }

▶ Iterating is such a central activity that Java offers different ways to do it
▶ for (...) {...}, while (...) {...}, do {...} while (...) Schleifen

Fortgeschrittene Programmierung (Java 2) 11 / 23

https://dh-cologne.github.io/java-wegweiser/articles/Schleifen.html


Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?

▶ No technical difference, it’s about code clarity
▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

▶ What are the important elements of any loop?
▶ Initial state (int i = 0)
▶ Condition to terminate (i < myArray.length)
▶ Change in each step (i++)

Fortgeschrittene Programmierung (Java 2) 12 / 23



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

▶ What are the important elements of any loop?
▶ Initial state (int i = 0)
▶ Condition to terminate (i < myArray.length)
▶ Change in each step (i++)

Fortgeschrittene Programmierung (Java 2) 12 / 23



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

▶ What are the important elements of any loop?
▶ Initial state (int i = 0)
▶ Condition to terminate (i < myArray.length)
▶ Change in each step (i++)

Fortgeschrittene Programmierung (Java 2) 12 / 23



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

▶ What are the important elements of any loop?

▶ Initial state (int i = 0)
▶ Condition to terminate (i < myArray.length)
▶ Change in each step (i++)

Fortgeschrittene Programmierung (Java 2) 12 / 23



Introduction and Motivation

Loops: for and while

▶ How to decide which loop to use?
▶ No technical difference, it’s about code clarity

▶ I.e., for future code readers, potentially yourself

Example
for (int i = 0; i < myArray.length; i++) { ... }
int i = 0; while (i < myArray.length) { i++; ... }

▶ What are the important elements of any loop?
▶ Initial state (int i = 0)
▶ Condition to terminate (i < myArray.length)
▶ Change in each step (i++)

Fortgeschrittene Programmierung (Java 2) 12 / 23



Introduction and Motivation

Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word

▶ Solution so far
▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Better: After inspecting each file, see if you need to load another

Fortgeschrittene Programmierung (Java 2) 13 / 23



Introduction and Motivation

Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word
▶ Solution so far

▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Better: After inspecting each file, see if you need to load another

Fortgeschrittene Programmierung (Java 2) 13 / 23



Introduction and Motivation

Problems

Example (File Search)
▶ 1000s of files
▶ Search term is a single word
▶ We’re interested in the first file with the word
▶ Solution so far

▶ Create an array with all contents of the files
▶ Iterate over the array
▶ Return the one we want, disregard all others

▶ Wasteful: Most file contents will probably never be read
▶ Better: After inspecting each file, see if you need to load another

Fortgeschrittene Programmierung (Java 2) 13 / 23



Section 4

Iterator



Iterator

Iterator

▶ An interface in the Java library: java.util.Iterator  java.util.Iterator

▶ A iterator iterates once over a collection of objects

▶ Four methods (only two non-optional):
boolean hasNext(): Returns true if there are more elements in the sequence
E next(): Returns the next element in the collection
void remove(): Removes the last element returned (optional)
void forEachRemaining(Consumer<? super E> a): Applies action to elements not yet returned

Fortgeschrittene Programmierung (Java 2) 15 / 23

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


Iterator

Iterator

▶ An interface in the Java library: java.util.Iterator  java.util.Iterator

▶ A iterator iterates once over a collection of objects
▶ Four methods (only two non-optional):

boolean hasNext(): Returns true if there are more elements in the sequence
E next(): Returns the next element in the collection
void remove(): Removes the last element returned (optional)
void forEachRemaining(Consumer<? super E> a): Applies action to elements not yet returned

Fortgeschrittene Programmierung (Java 2) 15 / 23

https://docs.oracle.com/javase/8/docs/api/java/util/Iterator.html


Iterator

Iterator
▶ An iterator object represents a specific iteration over a specific collection
▶ Iterators can (mostly) not be used twice
▶ Iterators are most naturally used in combination with while-loops:

1 Iterator iter = ...
2 while(iter.hasNext()) {
3 Object myObject = iter.next();
4 }

Benefits
▶ We only inspect/load as many elements as needed
▶ Object-oriented iteration: The iterator object represents the iteration itself
▶ Iterators make iterating easier (and object oriented) – they do not add something what

would be impossible otherwise

Fortgeschrittene Programmierung (Java 2) 16 / 23



Iterator

Iterator
▶ An iterator object represents a specific iteration over a specific collection
▶ Iterators can (mostly) not be used twice
▶ Iterators are most naturally used in combination with while-loops:

1 Iterator iter = ...
2 while(iter.hasNext()) {
3 Object myObject = iter.next();
4 }

Benefits
▶ We only inspect/load as many elements as needed
▶ Object-oriented iteration: The iterator object represents the iteration itself
▶ Iterators make iterating easier (and object oriented) – they do not add something what

would be impossible otherwise

Fortgeschrittene Programmierung (Java 2) 16 / 23



demo



Section 5

Iterable



Iterable

Iterable

▶ An interface in the Java library: java.lang.Iterable
▶ Provides a single (non-default) method: Iterator<T> iterator()

▶ I.e.: the method returns an Iterator

▶ An object that implements Iterable
▶ is iterable, i.e., can be iterated on
▶ can be used in a for-loop like this:

1 for (Object o : myIterable) {
2 o.doSomething();
3 }

Fortgeschrittene Programmierung (Java 2) 19 / 23



Iterable

Iterable

▶ An interface in the Java library: java.lang.Iterable
▶ Provides a single (non-default) method: Iterator<T> iterator()

▶ I.e.: the method returns an Iterator
▶ An object that implements Iterable

▶ is iterable, i.e., can be iterated on
▶ can be used in a for-loop like this:

1 for (Object o : myIterable) {
2 o.doSomething();
3 }

Fortgeschrittene Programmierung (Java 2) 19 / 23



demo



Generics

Generics

Topic for next week, but:
▶ Some classes are written with angle brackets: Iterator<Student> / Iterable<Student>

▶ Angle brackets contain the type that we iterate over
▶ This allows us to re-use the same code to iterate over different tyes!

Fortgeschrittene Programmierung (Java 2) 21 / 23



Next Week: No Class!



Exercise

Exercise

https://github.com/idh-cologne-java-2-summer-2023/exercise-04

Fortgeschrittene Programmierung (Java 2) 23 / 23

https://github.com/idh-cologne-java-2-summer-2023/exercise-04

	Last Exercise
	Remotes
	Introduction and Motivation
	Iterator
	Iterable
	Generics
	Exercise

