
Recap

Maps
I Key-Value-Storage, used frequently!
I Interface: Map<K, V>

I Implementation: HashMap<K, V>

I Keys and values are stored in pairs
I Pairs in which the keys have the same hashCode() end up together in a linked list

Recursion
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MyLinkedList with Recursive Implementation of size()
public class MyLinkedList {

public int size() { return prefirst.size() - 1; }

// ...

private class ListElement {
T value;
ListElement next;

ListElement(T value) { this.value = value; }

public int size() {
if (next == null)

return 1;
return next.size() + 1;

}
}

}

size() is recursive,
because it may call itself
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Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion
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Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Natural numbers
I 0 is a natural number
I If n is a natural number, n + 1 is also a natural number
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Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Definition of the factorial

Non-recursive definition
I n! =

∏n
i=1 i

Recursive definition
I 0! = 1 (base case)
I n! = n × (n − 1)! (recursion step)
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Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Some German Sentences
I A main clause consists of a noun phrase and a verb phrase (base case)

I E.g., “Maria schläft”
I A sentence consists of two main clauses, joined by “denn” (recursion step)

I E.g., “Maria schläft denn Hans isst denn der Pizzabote war da.”
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Recursion

I Two components
I Recursion step: How to make one additional step
I Base case(s): When and how to stop doing additional steps

Example

I Recursion step (for person A)
I Ask the next person (B) how long this queue is
I The queue length for A is one more than for B

I Base case
I The first person knows how long the queue is
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demo
Implementation of get(int) in linked list
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Recursion

I Two relevant areas in programming
I Recursive data structures – how we store things
I Recursive algorithms – how we process things

I Usually, one needs recursive algorithms to deal with recursive data structures
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Section 1

Recursive Data Structures



Recursive Data Structures

Recursive Data Structures

I A new kind of data structure: Trees
I Represents hierarchical situations

I File systems
I HTML/XML nodes
I Company hierarchies

Recursive Definition of a Tree
A tree is a pair consisting of some value and a set of children, which are trees.
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Recursive Data Structures

Tree Terminology

I Parent/child: The super- or subordinate tree
I Each tree has 0 or 1 parents, and 0 or more children

I Root tree: The tree with 0 parents
I Leaf tree: Any tree that has 0 children

I Metrics
I Depth: The maximal number of steps between root and a leaf
I Size: Number of trees
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Recursive Data Structures

Recursive Data Structures
Trees

Examples
All these are trees:

”Hello” Wheeled Vehicle

Buggy Bike

Tandem E-Bike

Music Genre

Alternative
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demo
Creation of a data structure Tree<T>



Recursive Algorithms

Recursive Algorithms

I Recursive algorithms to take recursive data structure into account
I Linked list context

I size()
I Single base case
I During return, size is calculated

I get(int)
I Two base cases: End of list reached and n equals 0
I Return value is passed through unchanged

I Oerations for the tree
I Size: Total number of trees
I Depth: Maximal number of trees between root and one leaf
I Both require “visiting” each tree and doing something – a “walk”
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demo
Visit each item in the tree and print it
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Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search

1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Exercise

Exercise

https://github.com/idh-cologne-java-2/exercise-08
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