
Recap

Maps
I Key-Value-Storage, used frequently!
I Interface: Map<K, V>

I Implementation: HashMap<K, V>

I Keys and values are stored in pairs
I Pairs in which the keys have the same hashCode() end up together in a linked list

Recursion

Fortgeschrittene Programmierung (Java 2) 1 / 19





MyLinkedList with Recursive Implementation of size()
public class MyLinkedList {

public int size() { return prefirst.size() - 1; }

// ...

private class ListElement {
T value;
ListElement next;

ListElement(T value) { this.value = value; }

public int size() {
if (next == null)

return 1;
return next.size() + 1;

}
}

}

size() is recursive,
because it may call itself

Fortgeschrittene Programmierung (Java 2) 3 / 19

Nils Reiter

Nils Reiter



MyLinkedList with Recursive Implementation of size()
public class MyLinkedList {

public int size() { return prefirst.size() - 1; }

// ...

private class ListElement {
T value;
ListElement next;

ListElement(T value) { this.value = value; }

public int size() {
if (next == null)

return 1;
return next.size() + 1;

}
}

}

size() is recursive,
because it may call itself

Fortgeschrittene Programmierung (Java 2) 3 / 19



Session 8: Recursion, Part 2
Fortgeschrittene Programmierung (Java 2)

Nils Reiter
nils.reiter@uni-koeln.de

June 6, 2022







Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Fortgeschrittene Programmierung (Java 2) 7 / 19

https://en.wikipedia.org/wiki/Recursion


Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Natural numbers
I 0 is a natural number
I If n is a natural number, n + 1 is also a natural number

Fortgeschrittene Programmierung (Java 2) 7 / 19

https://en.wikipedia.org/wiki/Recursion


Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Definition of the factorial

Non-recursive definition
I n! =

∏n
i=1 i

Recursive definition
I 0! = 1 (base case)
I n! = n × (n − 1)! (recursion step)

Fortgeschrittene Programmierung (Java 2) 7 / 19

https://en.wikipedia.org/wiki/Recursion
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Recursion

I Recursion (adjective: recursive) occurs when a thing is defined in terms of itself or of its
type � Recursion

Some German Sentences
I A main clause consists of a noun phrase and a verb phrase (base case)

I E.g., “Maria schläft”
I A sentence consists of two main clauses, joined by “denn” (recursion step)

I E.g., “Maria schläft denn Hans isst denn der Pizzabote war da.”

Fortgeschrittene Programmierung (Java 2) 7 / 19

https://en.wikipedia.org/wiki/Recursion
Nils Reiter

Nils Reiter



Recursion

I Two components
I Recursion step: How to make one additional step
I Base case(s): When and how to stop doing additional steps

Example

I Recursion step (for person A)
I Ask the next person (B) how long this queue is
I The queue length for A is one more than for B

I Base case
I The first person knows how long the queue is

Fortgeschrittene Programmierung (Java 2) 8 / 19



Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo
Implementation of get(int) in linked list

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



Recursion

I Two relevant areas in programming
I Recursive data structures – how we store things
I Recursive algorithms – how we process things

I Usually, one needs recursive algorithms to deal with recursive data structures

Fortgeschrittene Programmierung (Java 2) 10 / 19



Section 1

Recursive Data Structures



Recursive Data Structures

Recursive Data Structures

I A new kind of data structure: Trees
I Represents hierarchical situations

I File systems
I HTML/XML nodes
I Company hierarchies

Recursive Definition of a Tree
A tree is a pair consisting of some value and a set of children, which are trees.

Fortgeschrittene Programmierung (Java 2) 12 / 19



Recursive Data Structures

Recursive Data Structures

I A new kind of data structure: Trees
I Represents hierarchical situations

I File systems
I HTML/XML nodes
I Company hierarchies

Recursive Definition of a Tree
A tree is a pair consisting of some value and a set of children, which are trees.

Fortgeschrittene Programmierung (Java 2) 12 / 19

Nils Reiter

Nils Reiter



Recursive Data Structures

Tree Terminology

I Parent/child: The super- or subordinate tree
I Each tree has 0 or 1 parents, and 0 or more children

I Root tree: The tree with 0 parents
I Leaf tree: Any tree that has 0 children

I Metrics
I Depth: The maximal number of steps between root and a leaf
I Size: Number of trees

Fortgeschrittene Programmierung (Java 2) 13 / 19

Nils Reiter



Recursive Data Structures

Tree Terminology

I Parent/child: The super- or subordinate tree
I Each tree has 0 or 1 parents, and 0 or more children

I Root tree: The tree with 0 parents
I Leaf tree: Any tree that has 0 children
I Metrics

I Depth: The maximal number of steps between root and a leaf
I Size: Number of trees

Fortgeschrittene Programmierung (Java 2) 13 / 19



Recursive Data Structures

Recursive Data Structures
Trees

Examples
All these are trees:

”Hello” Wheeled Vehicle

Buggy Bike

Tandem E-Bike

Music Genre

Alternative

Fortgeschrittene Programmierung (Java 2) 14 / 19

Nils Reiter

Nils Reiter



demo
Creation of a data structure Tree<T>



Recursive Algorithms

Recursive Algorithms

I Recursive algorithms to take recursive data structure into account
I Linked list context

I size()
I Single base case
I During return, size is calculated

I get(int)
I Two base cases: End of list reached and n equals 0
I Return value is passed through unchanged

I Oerations for the tree
I Size: Total number of trees
I Depth: Maximal number of trees between root and one leaf
I Both require “visiting” each tree and doing something – a “walk”

Fortgeschrittene Programmierung (Java 2) 16 / 19



Recursive Algorithms

Recursive Algorithms

I Recursive algorithms to take recursive data structure into account
I Linked list context

I size()
I Single base case
I During return, size is calculated

I get(int)
I Two base cases: End of list reached and n equals 0
I Return value is passed through unchanged

I Oerations for the tree
I Size: Total number of trees
I Depth: Maximal number of trees between root and one leaf
I Both require “visiting” each tree and doing something – a “walk”

Fortgeschrittene Programmierung (Java 2) 16 / 19

Nils Reiter



Recursive Algorithms

Recursive Algorithms

I Recursive algorithms to take recursive data structure into account
I Linked list context

I size()
I Single base case
I During return, size is calculated

I get(int)
I Two base cases: End of list reached and n equals 0
I Return value is passed through unchanged

I Oerations for the tree
I Size: Total number of trees
I Depth: Maximal number of trees between root and one leaf
I Both require “visiting” each tree and doing something – a “walk”

Fortgeschrittene Programmierung (Java 2) 16 / 19



demo
Visit each item in the tree and print it

Nils Reiter

Nils Reiter

Nils Reiter



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search

1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Recursive Algorithms

Depth-First Search vs. Breadth-First Search
I Two strategies of iterating over all elements of a tree

I Concerns the order in which elements are visited
I Depth-first search: Descend first before going to a sibling
I Breadth-first search: First go over all siblings, then descend

Wheeled Vehicle

Bike

Tandem E-Bike

Buggy

1

2

3 4

5

Depth-First search
1

2

4 5

3

Breadth-First search

Fortgeschrittene Programmierung (Java 2) 18 / 19



Exercise

Exercise

https://github.com/idh-cologne-java-2/exercise-08

Fortgeschrittene Programmierung (Java 2) 19 / 19

https://github.com/idh-cologne-java-2/exercise-08
https://github.com/idh-cologne-java-2/exercise-08

	Recursive Data Structures
	Recursive Algorithms
	Exercise

