
Ranking Systems (part 2)
HS Rankingaufgaben in der Computerlinguistik

Nils Reiter
nils.reiter@uni-koeln.de

Department of Digital Humanities

May 16, 2023
(Sommersemester 2023)



Recap

Learn to rank
I Features represent a pair of query and offering ~x = φ(qi , oj)

I Different ways of casting the problem
I Pointwise: Model predicts y for individual ~x, with y being an ordinal class or score

I E.g., the model predicts that φ(q4, o1) get a score of 3
I Pairwise: Model predicts, which of ~xa and ~xb are ranked higher

I E.g., the model predicts that φ(q9, o3) comes before φ(q9, o7)

I Listwise: Model predicts the full ranking over a list of feature vectors ~x
I E.g., model predicts the ranking 〈φ(q3, o1), φ(q3, o9), φ(q7, o1)〉

I Point- and pairwise approaches can be implemented with a “standard” ML algorithm
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Section 1

Linear/Logistic Regression



Regression

Regression

I Regression
I Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, …)
I Based on some input features (e.g., “R-Wert”, number of past cases, …)

I Linear
I The relation between input features and output values is linear
I Math: y = a1x1 + a2x2 + · · ·+ anxn + b

I Logistic
I Relation between input and output follows a logistic equation σ:

I 0 ≤ σ(x) ≤ 1, for all values of x
I They can be interpreted as probabilities

Ranking Systems (part 2) 4 / 25



Regression

Regression

I Regression
I Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, …)
I Based on some input features (e.g., “R-Wert”, number of past cases, …)

I Linear
I The relation between input features and output values is linear
I Math: y = a1x1 + a2x2 + · · ·+ anxn + b

I Logistic
I Relation between input and output follows a logistic equation σ:

I 0 ≤ σ(x) ≤ 1, for all values of x
I They can be interpreted as probabilities

Ranking Systems (part 2) 4 / 25



Regression

Regression

I Regression
I Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, …)
I Based on some input features (e.g., “R-Wert”, number of past cases, …)

I Linear
I The relation between input features and output values is linear
I Math: y = a1x1 + a2x2 + · · ·+ anxn + b

I Logistic
I Relation between input and output follows a logistic equation σ:

I 0 ≤ σ(x) ≤ 1, for all values of x
I They can be interpreted as probabilities

Ranking Systems (part 2) 4 / 25



Regression

Linear Regression
Example

I Input
I Number of words in a (narrative, prose) text

I Output
I Number of literary characters in the text

(in the sense of “Figur”, not in the sense of “Zeichen”)

I Linear equation (with one input variable): y = ax + b
I With x being the number of tokens and y the number of characters
I Real examples have more variables, but are harder to visualize
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Regression

Linear Regression
Example scenario

C

T1

T2

...

y1

y2

...

x1

x2

...

Corpus

Texts #Characters#Words

Figure: Schema of the example scenario
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Regression

Linear Regression
The data set

x y (# characters)

10 3
105 5
150 8
210 12
250 7
295 13
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Linear Regression
The data set

x y (# characters)

10 3
105 5
150 8
210 12
250 7
295 13 x

y

×
×

×

×

×

× h(x) = 0.45x + 0.1
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Regression

Linear Regression
The Task

x

y

×
×

×

×

×

×

h(x) = ax + b

The Model
I Linear regression with one variable (= univariate linear regression)
I Prediction (hypothesis function): y = ha,b(x) = ax + b
I How to set parameters a and b? → training algorithm
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Regression

Doing Classification with Linear Regression

I Example task: Will a book receive a Nobel prize, given the number of literary characters
in it?

# Characters Win

1 No
10 No
15 Yes
21 Yes
25 No
29 Yes x

y

× ×

×

×

××
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Regression

Fitting an Equation

x

y

× ×

×

×

××

h(x) = ax + b linear
equation

h(x) = 1
1+e−x

logistic
function
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Regression

The Logistic Function

x

y

1

1 2 4-1-2-5

y = 1
1+e−(ax+b) (general form)
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Regression

Parameter Fitting

x

y

× ×

×

×

×× h(x) = 1
1+e−(10x−15)

I Linear equations can be wrapped in a logistic one
I Same parameters to be tuned (a and b)
I e =

∑∞
n=0

1
n! = 2.71828 (Euler’s number)
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Regression

Summary: Logistic Regression (with a single variable)

Logistic regression is half of the math of deep learning

I Regression: Predicting probabilities � Binary classification
I Model

I Logistic equations
I y = 1

1+e−(ax+b)

I Learning algorithm: How to choose a and b?
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Gradient Descent



Regression

Learning Regression Models

I How to select the parameters a, b such that the hypothesis function describes the data
points as best as possible?

I Learning algorithm Gradient Descent

Gradient descent is half of the algorithms of deep learning
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Regression

Loss: Intuition

The loss measures the ‘wrongness’ of values for a and b.

x

y

b + ax

×
×

×

×

×
x

y

1
e−(b+ax)

× ×

× × ×
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I How big is the gap between a hypothesis and the data?
I Is (a, b) = (0.3, 0.5) or (a, b) = (0.4, 0.4) better?
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Regression

Loss function: Intuition

I Loss should be as small as possible
I Total loss can be calculated for given parameters ~w = (a, b)
I Idea:

I We change ~w until we find the minimum of the function
I We use the derivative to find out if we are in a minimum
I The derivative also tells us how to change the update parameters a and b
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Regression

Loss function: Intuition

parameters

loss
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parameters

loss

Function should be convex!
If not, we might get stuck in local minimum
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Regression

Hypothesis vs. Loss Function

I Hypothesis function h
I Calculates outcomes, given feature values x – and parameter values ~w = (a, b)

I Loss function J
I Calculates ‘wrongness’ of h, given parameter values ~w (and a data set)
I In reality, ~w represents many more parameters (thousands)
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Regression

Loss Function

Figure: The loss function in our setting visualised
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Regression

Loss Function

Figure: The loss function in our setting visualised

I Searching for the a, b settings with minimal loss
I = Searching for the minimum!
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Regression

Loss Function
Definition

Loss function depends on hypothesis function

Linear hypothesis function

I h(x) = ax + b
I Loss: Mean squared error

Logistic hypothesis function

I h(x) = 1
e−(b+ax)

I Loss: (Binary) cross-entropy loss
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Regression

Loss Function
Definition for Linear Regression
I The loss function is a function on parameter values a and b

(for a given hypothesis function and data set)
I Hypothesis function: h~w = w1x + w0

~w = (a, b): parameters h~w: hypothesis function m: number of items

J (~w) =

1

2

1

m

m∑
i=1

(h~w(xi)− yi)
2

I Calculate the loss for item i
I Square the error
I Sum them up
I Divide by the number of items

I Known as: Mean squared error
I Divide by two

I out of convenience, because derivation
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Regression

Loss function
Definition for Logistic Regression

I Two cases: yi = 0 or yi = 1 – yi : real outcome for instance i
I Caveat: log 0 is undefined – add ε = 0.0000001 if needed

J (~w) =

− 1

m

m∑
i=0

yi log h~w(xi)

+

(1− yi) log (1− h~w(xi))

yi h~w(xi) + ε yi log h~w(xi) + (1− yi) log(1− h~w(xi))

0 1.0000001 −23.2535
0 0 0
1 1 0
1 0.0000001 −23.2535
1 0.8 −0.3219281
1 0.2 −2.321928
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Regression

More Dimensions

I Above: 1 dimension, 2 parameters
I a: slope, b: y-intercept
I Input feature x, a single value

I More dimensions
I ~w = 〈w0,w1, . . . ,wn〉 (n dimensions)
I Input vector ~x with n − 1 dimensions
I Hypothesis function: h~w(x) = wnxn + wn−1xn−1 + . . .w1x1 + w0

I w0: y-intercept, w1 to wn: slopes
I Algorithms

I Derivatives more complicated
I Otherwise identical
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Section 2

Summary



Summary

Summary
Regression
I Fitting parameters to a data distribution

I Linear R: Numeric prediction algorithm
I Prediction model: h~w(x) = ax + b

I Logistic R: Classification algorithm (because we interpret results as probabilities)
I Prediction model: h~w(x) = 1

e−(b+ax)

I Learning algorithm: Gradient descent

Gradient Descent
I Initialise ~w with random values (e.g., 0)
I Repeat:

I Find the direction to the minimum by taking the derivative
I Change ~w accordingly, using a learning rate η
I Stop when ~w don’t change anymore
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