Ranking Systems (part 2) HS Rankingaufgaben in der Computerlinguistik

Nils Reiter nils.reiter@uni-koeln.de

Department of Digital Humanities

May 16, 2023 (Sommersemester 2023)

Recap

Learn to rank

- ▶ Features represent a pair of query and offering $\vec{x} = \phi(q_i, o_j)$
- Different ways of casting the problem
 - ▶ Pointwise: Model predicts y for individual \vec{x} , with y being an ordinal class or score
 - E.g., the model predicts that $\phi(q_4, o_1)$ get a score of 3
 - ▶ Pairwise: Model predicts, which of \vec{x}_a and \vec{x}_b are ranked higher
 - ▶ E.g., the model predicts that $\phi(q_9, o_3)$ comes before $\phi(q_9, o_7)$
 - \blacktriangleright Listwise: Model predicts the full ranking over a list of feature vectors \vec{x}
 - E.g., model predicts the ranking $\langle \phi(q_3, o_1), \phi(q_3, o_9), \phi(q_7, o_1) \rangle$

Point- and pairwise approaches can be implemented with a "standard" ML algorithm

Section 1

Linear/Logistic Regression

Regression

- ▶ Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)

Regression

- ▶ Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)

Linear

- The relation between input features and output values is linear
- Math: $y = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b$

Regression

- ▶ Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)

Linear

The relation between input features and output values is linear

• Math:
$$y = a_1 x_1 + a_2 x_2 + \dots + a_n x_n + b$$

Logistic

- Relation between input and output follows a logistic equation σ :
 - ▶ $0 \le \sigma(x) \le 1$, for all values of x
 - They can be interpreted as probabilities

Linear Regression

Input

Number of words in a (narrative, prose) text

Output

Number of literary characters in the text (in the sense of "Figur", not in the sense of "Zeichen")

Linear Regression

Input

Number of words in a (narrative, prose) text

Output

Number of literary characters in the text (in the sense of "Figur", not in the sense of "Zeichen")

• Linear equation (with one input variable): y = ax + b

- \blacktriangleright With x being the number of tokens and y the number of characters
- Real examples have more variables, but are harder to visualize

Linear Regression

Example scenario

Figure: Schema of the example scenario

Linear Regression

The data set

x	$y~(\#~{\sf characters})$
10	3
105	5
150	8
210	12
250	7
295	13

Linear Regression

The data set

x	y (# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x: text length, y: num. of characters)

Linear Regression

The data set

x	y (# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x: text length, y: num. of characters)

Linear Regression

The Model

- Linear regression with one variable (= univariate linear regression)
- ▶ Prediction (hypothesis function): $y = h_{a,b}(x) = ax + b$
- How to set parameters a and $b? \rightarrow$ training algorithm

Doing Classification with Linear Regression

Example task: Will a book receive a Nobel prize, given the number of literary characters in it?

# Characters	Win
1	No
10	No
15	Yes
21	Yes
25	No
29	Yes

-

Fitting an Equation

Fitting an Equation

Parameter Fitting

- Linear equations can be wrapped in a logistic one
- ► Same parameters to be tuned (*a* and *b*)

•
$$e = \sum_{n=0}^{\infty} \frac{1}{n!} = 2.71828$$
 (Euler's number)

Summary: Logistic Regression (with a single variable)

Logistic regression is half of the math of deep learning

Summary: Logistic Regression (with a single variable)

Logistic regression is half of the math of deep learning

- ▶ Regression: Predicting probabilities → Binary classification
- Model
 - Logistic equations

$$y = \frac{1}{1 + e^{-(ax+b)}}$$

Learning algorithm: How to choose a and b?

Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Gradient descent is half of the algorithms of deep learning

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

How big is the gap between a hypothesis and the data?

▶ Is (a, b) = (0.3, 0.5) or (a, b) = (0.4, 0.4) better?

Loss: Intuition

The *loss* measures the 'wrongness' of values for a and b.

How big is the gap between a hypothesis and the data?

▶ Is (a, b) = (0.3, 0.5) or (a, b) = (0.4, 0.4) better?

Loss function: Intuition

- Loss should be as small as possible
- ▶ Total loss can be calculated for given parameters $\vec{w} = (a, b)$
- Idea:
 - \blacktriangleright We change \vec{w} until we find the minimum of the function
 - We use the derivative to find out if we are in a minimum
 - ▶ The derivative also tells us how to change the update parameters *a* and *b*

Loss function: Intuition

Loss function: Intuition

Function should be convex! If not, we might get stuck in local minimum

Loss function: Intuition

Function should be convex! If not, we might get stuck in local minimum

Hypothesis vs. Loss Function

- \blacktriangleright Hypothesis function h
 - ▶ Calculates outcomes, given feature values x and parameter values $\vec{w} = (a, b)$

Loss function J

- ▶ Calculates 'wrongness' of h, given parameter values \vec{w} (and a data set)
- ▶ In reality, \vec{w} represents many more parameters (thousands)

Loss Function

Figure: The loss function in our setting visualised

Loss Function

Figure: The loss function in our setting visualised

- Searching for the a, b settings with minimal loss
- Searching for the minimum!

Loss Function

Loss function depends on hypothesis function

Linear hypothesis function

$$\blacktriangleright h(x) = ax + b$$

► Loss: Mean squared error

Loss Function

Loss function depends on hypothesis function

Linear hypothesis function

 $\blacktriangleright h(x) = ax + b$

► Loss: Mean squared error

Logistic hypothesis function

•
$$h(x) = \frac{1}{e^{-(b+ax)}}$$

Loss: (Binary) cross-entropy loss

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

$$J(\vec{w}) =$$

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

 $\vec{w} = (a, b)$: parameters $h_{\vec{w}}$: hypothesis function m: number of items

$$J(\vec{w}) = h_{\vec{w}}(x_i) - y_i$$

 \blacktriangleright Calculate the loss for item i

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

$$J(\vec{w}) = (h_{\vec{w}}(x_i) - y_i)^2$$

- \blacktriangleright Calculate the loss for item i
- Square the error

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

$$J(\vec{w}) = \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- \blacktriangleright Calculate the loss for item i
- Square the error
- Sum them up

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

$$J(\vec{w}) = \frac{1}{m} \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- \blacktriangleright Calculate the loss for item i
- Square the error
- ► Sum them up
- Divide by the number of items
 - Known as: Mean squared error

Definition for Linear Regression

\blacktriangleright The loss function is a function on parameter values a and b

- (for a given hypothesis function and data set)
 - Hypothesis function: $h_{\vec{w}} = w_1 x + w_0$

$$J(\vec{w}) = \frac{1}{2} \frac{1}{m} \sum_{i=1}^{m} (h_{\vec{w}}(x_i) - y_i)^2$$

- \blacktriangleright Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
 - Known as: Mean squared error
- Divide by two
 - out of convenience, because derivation

Loss function

Definition for Logistic Regression

- **•** Two cases: $y_i = 0$ or $y_i = 1 y_i$: real outcome for instance *i*
 - ▶ Caveat: $\log 0$ is undefined add $\epsilon = 0.0000001$ if needed

Loss function

Definition for Logistic Regression

Two cases: y_i = 0 or y_i = 1 − y_i: real outcome for instance i
Caveat: log 0 is undefined − add ε = 0.0000001 if needed

$$J(\vec{w}) = y_i + (1 - y_i)$$

Loss function

Definition for Logistic Regression

Two cases: y_i = 0 or y_i = 1 − y_i: real outcome for instance i
Caveat: log 0 is undefined − add ε = 0.0000001 if needed

$$J(\vec{w}) = y_i - h_{\vec{w}}(x_i) + (1 - y_i) - (1 - h_{\vec{w}}(x_i))$$

Loss function

Definition for Logistic Regression

- ▶ Two cases: $y_i = 0$ or $y_i = 1 y_i$: real outcome for instance i
 - ▶ Caveat: $\log 0$ is undefined add $\epsilon = 0.0000001$ if needed

$$J(\vec{w}) = y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log (1 - h_{\vec{w}}(x_i))$$

Loss function

Definition for Logistic Regression

Two cases: y_i = 0 or y_i = 1 − y_i: real outcome for instance i
Caveat: log 0 is undefined − add ε = 0.0000001 if needed

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} y_i \log h_{\vec{w}}(x_i) + (1 - y_i) \log (1 - h_{\vec{w}}(x_i))$$

Loss function

Definition for Logistic Regression

- ▶ Two cases: $y_i = 0$ or $y_i = 1 y_i$: real outcome for instance *i*
 - ▶ Caveat: $\log 0$ is undefined add $\epsilon = 0.0000001$ if needed

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_i \log h_{\vec{w}}(x_i)}_{0 \text{ iff } y_i = 0} + \underbrace{(1 - y_i) \log(1 - h_{\vec{w}}(x_i))}_{0 \text{ iff } y_i = 1}$$

Loss function

Definition for Logistic Regression

- ▶ Two cases: $y_i = 0$ or $y_i = 1 y_i$: real outcome for instance i
 - ▶ Caveat: $\log 0$ is undefined add $\epsilon = 0.0000001$ if needed

$$J(\vec{w}) = -\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_i \log h_{\vec{w}}(x_i)}_{0 \text{ iff } y_i = 0} + \underbrace{(1 - y_i) \log(1 - h_{\vec{w}}(x_i))}_{0 \text{ iff } y_i = 1}$$

y_i	$h_{\vec{w}}(x_i) + \epsilon$	$y_i \log h_{ec w}(x_i) + (1 - y_i) \log(1 - h_{ec w}(x_i))$
0	1.0000001	-23.2535
0	0	0
1	1	0
1	0.0000001	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321928
$\begin{array}{c} 1 \\ 1 \end{array}$		

More Dimensions

► Above: 1 dimension, 2 parameters

- ▶ *a*: slope, *b*: y-intercept
- \blacktriangleright Input feature *x*, a single value

More Dimensions

Above: 1 dimension, 2 parameters

- ▶ *a*: slope, *b*: y-intercept
- Input feature x, a single value
- More dimensions
 - $\vec{w} = \langle w_0, w_1, \dots, w_n \rangle$ (*n* dimensions)
 - Input vector \vec{x} with n-1 dimensions
 - Hypothesis function: $h_{\vec{w}}(x) = w_n x_n + w_{n-1} x_{n-1} + \ldots + w_1 x_1 + w_0$
 - w_0 : y-intercept, w_1 to w_n : slopes

More Dimensions

Above: 1 dimension, 2 parameters

- ▶ *a*: slope, *b*: y-intercept
- Input feature x, a single value
- More dimensions
 - $\vec{w} = \langle w_0, w_1, \dots, w_n \rangle$ (*n* dimensions)
 - Input vector \vec{x} with n-1 dimensions
 - Hypothesis function: $h_{\vec{w}}(x) = w_n x_n + w_{n-1} x_{n-1} + \dots + w_1 x_1 + w_0$
 - w_0 : y-intercept, w_1 to w_n : slopes

Algorithms

- Derivatives more complicated
- Otherwise identical

Section 2

Summary

Summary

Regression

- Fitting parameters to a data distribution
 - Linear R: Numeric prediction algorithm
 - Prediction model: $h_{\vec{w}}(x) = ax + b$
 - ▶ Logistic R: Classification algorithm (because we interpret results as probabilities)
 - Prediction model: $h_{\vec{w}}(x) = \frac{1}{e^{-(b+ax)}}$
- Learning algorithm: Gradient descent

Gradient Descent

▶ Initialise \vec{w} with random values (e.g., 0)

Repeat:

- Find the direction to the minimum by taking the derivative
- $\blacktriangleright\,$ Change \vec{w} accordingly, using a learning rate η
- Stop when \vec{w} don't change anymore