Ranking Systems (part 2)

HS Rankingaufgaben in der Computerlinguistik

Nils Reiter
nils.reiter@uni-koeln.de
Department of Digital Humanities

May 16, 2023
(Sommersemester 2023)

Recap

Learn to rank

- Features represent a pair of query and offering $\vec{x}=\phi\left(q_{i}, o_{j}\right)$
- Different ways of casting the problem
- Pointwise: Model predicts y for individual \vec{x}, with y being an ordinal class or score
- E.g., the model predicts that $\phi\left(q_{4}, o_{1}\right)$ get a score of 3
- Pairwise: Model predicts, which of \vec{x}_{a} and \vec{x}_{b} are ranked higher
- E.g., the model predicts that $\phi\left(q_{9}, o_{3}\right)$ comes before $\phi\left(q_{9}, o_{7}\right)$
- Listwise: Model predicts the full ranking over a list of feature vectors \vec{x}
- E.g., model predicts the ranking $\left\langle\phi\left(q_{3}, o_{1}\right), \phi\left(q_{3}, o_{9}\right), \phi\left(q_{7}, o_{1}\right)\right\rangle$
- Point- and pairwise approaches can be implemented with a "standard" ML algorithm

Section 1

Linear/Logistic Regression

Regression

- Regression
- Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)

Regression

- Regression
- Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)
- Linear
- The relation between input features and output values is linear
- Math: $y=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b$

Regression

- Regression
- Prediction of numeric values (e.g., future COVID-19 cases; number of nouns in a text, ...)
- Based on some input features (e.g., "R-Wert", number of past cases, ...)
- Linear
- The relation between input features and output values is linear
- Math: $y=a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}+b$
- Logistic
- Relation between input and output follows a logistic equation σ :
- $0 \leq \sigma(x) \leq 1$, for all values of x
- They can be interpreted as probabilities

Linear Regression

Example

- Input
- Number of words in a (narrative, prose) text
- Output
- Number of literary characters in the text (in the sense of "Figur", not in the sense of "Zeichen")

Linear Regression

Example

- Input
- Number of words in a (narrative, prose) text
- Output
- Number of literary characters in the text (in the sense of "Figur", not in the sense of "Zeichen")
- Linear equation (with one input variable): $y=a x+b$
- With x being the number of tokens and y the number of characters
- Real examples have more variables, but are harder to visualize

Linear Regression

Example scenario

Figure: Schema of the example scenario

Linear Regression

The data set

x	y (\# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Linear Regression

The data set

x	y (\# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x : text length, y : num. of characters)

Linear Regression

The data set

x	y (\# characters)
10	3
105	5
150	8
210	12
250	7
295	13

Figure: Data set, each \times represents a text (x : text length, y : num. of characters)

Linear Regression

The Task

The Model

- Linear regression with one variable (= univariate linear regression)
- Prediction (hypothesis function): $y=h_{a, b}(x)=a x+b$
- How to set parameters a and b ? \rightarrow training algorithm

Doing Classification with Linear Regression

- Example task: Will a book receive a Nobel prize, given the number of literary characters in it?

\# Characters	Win
1	No
10	No
15	Yes
21	Yes
25	No
29	Yes

Fitting an Equation

Fitting an Equation

The Logistic Function

Parameter Fitting

- Linear equations can be wrapped in a logistic one
- Same parameters to be tuned (a and b)
- $e=\sum_{n=0}^{\infty} \frac{1}{n!}=2.71828 \quad$ (Euler's number)

Summary: Logistic Regression (with a single variable)

SPM1E:
Logistic regression is half of the math of deep learning

Summary: Logistic Regression (with a single variable)

SPDIE:

ALERT: Logistic regression is half of the math of deep learning

- Regression: Predicting probabilities \rightarrow Binary classification
- Model
- Logistic equations
- $y=\frac{1}{1+e^{-(a x+b)}}$
- Learning algorithm: How to choose a and b ?

Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

Learning Regression Models

- How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?
- Learning algorithm Gradient Descent

STOIIT: Gradient descent is half of the algorithms of deep learning

Loss: Intuition

The loss measures the 'wrongness' of values for a and b.

Loss: Intuition

The loss measures the 'wrongness' of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is $(a, b)=(0.3,0.5)$ or $(a, b)=(0.4,0.4)$ better?

Loss: Intuition

The loss measures the 'wrongness' of values for a and b.

- How big is the gap between a hypothesis and the data?
- Is $(a, b)=(0.3,0.5)$ or $(a, b)=(0.4,0.4)$ better?

Loss function: Intuition

- Loss should be as small as possible
- Total loss can be calculated for given parameters $\vec{w}=(a, b)$
- Idea:
- We change \vec{w} until we find the minimum of the function
- We use the derivative to find out if we are in a minimum
- The derivative also tells us how to change the update parameters a and b

Loss function: Intuition

Loss function: Intuition

Function should be convex!
If not, we might get stuck in local minimum

Loss function: Intuition

Function should be convex!
If not, we might get stuck in local minimum

Hypothesis vs. Loss Function

- Hypothesis function h
- Calculates outcomes, given feature values x - and parameter values $\vec{w}=(a, b)$
- Loss function J
- Calculates 'wrongness' of h, given parameter values \vec{w} (and a data set)
- In reality, \vec{w} represents many more parameters (thousands)

Loss Function

Figure: The loss function in our setting visualised

Loss Function

Figure: The loss function in our setting visualised

- Searching for the a, b settings with minimal loss
- = Searching for the minimum!

Loss Function

Loss function depends on hypothesis function

Linear hypothesis function

- $h(x)=a x+b$
- Loss: Mean squared error

Loss Function

Definition

> Loss function depends on hypothesis function

Linear hypothesis function

- $h(x)=a x+b$
- Loss: Mean squared error

Logistic hypothesis function

- $h(x)=\frac{1}{e^{-(b+a x)}}$
- Loss: (Binary) cross-entropy loss

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\vec{w}=(a, b): \text { parameters } h_{\vec{w}}: \text { hypothesis function } m \text { : number of items }
$$

$$
J(\vec{w})=
$$

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\quad h_{\vec{w}}\left(x_{i}\right)-y_{i}
\end{aligned}
$$

- Calculate the loss for item i

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\quad\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b) \text { : parameters } h_{\vec{w}} \text { : hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\sum_{i=1}^{m}\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error
- Sum them up

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\vec{w}=(a, b) \text { : parameters } h_{\vec{w}}: \text { hypothesis function } m \text { : number of items }
$$

$$
J(\vec{w})=\frac{1}{m} \sum_{i=1}^{m}\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
- Known as: Mean squared error

Loss Function

Definition for Linear Regression

- The loss function is a function on parameter values a and b (for a given hypothesis function and data set)
- Hypothesis function: $h_{\vec{w}}=w_{1} x+w_{0}$

$$
\begin{aligned}
& \vec{w}=(a, b): \text { parameters } h_{\vec{w}}: \text { hypothesis function } m \text { : number of items } \\
& \qquad J(\vec{w})=\frac{1}{2} \frac{1}{m} \sum_{i=1}^{m}\left(h_{\vec{w}}\left(x_{i}\right)-y_{i}\right)^{2}
\end{aligned}
$$

- Calculate the loss for item i
- Square the error
- Sum them up
- Divide by the number of items
- Known as: Mean squared error
- Divide by two
- out of convenience, because derivation

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined $-\operatorname{add} \epsilon=0.0000001$ if needed

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined $-\operatorname{add} \epsilon=0.0000001$ if needed

$$
J(\vec{w})=\quad y_{i} \quad+\left(1-y_{i}\right)
$$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined $-\operatorname{add} \epsilon=0.0000001$ if needed

$$
J(\vec{w})=\quad y_{i} \quad h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \quad\left(1-h_{\vec{w}}\left(x_{i}\right)\right)
$$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined $-\operatorname{add} \epsilon=0.0000001$ if needed

$$
J(\vec{w})=\quad y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)
$$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined $-\operatorname{add} \epsilon=0.0000001$ if needed

$$
J(\vec{w})=-\frac{1}{m} \sum_{i=0}^{m} y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)
$$

Loss function

Definition for Logistic Regression

- Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i
- Caveat: $\log 0$ is undefined - add $\epsilon=0.0000001$ if needed

$$
J(\vec{w})=-\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_{i} \log h_{\vec{w}}\left(x_{i}\right)}_{0 \text { iff } y_{i}=0}+\underbrace{\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)}_{0 \text { iff } y_{i}=1}
$$

Loss function

Definition for Logistic Regression

\rightarrow Two cases: $y_{i}=0$ or $y_{i}=1-y_{i}$: real outcome for instance i

- Caveat: $\log 0$ is undefined - add $\epsilon=0.0000001$ if needed

$$
J(\vec{w})=-\frac{1}{m} \sum_{i=0}^{m} \underbrace{y_{i} \log h_{\vec{w}}\left(x_{i}\right)}_{0 \text { iff } y_{i}=0}+\underbrace{\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)}_{0 \text { iff } y_{i}=1}
$$

y_{i}	$h_{\vec{w}}\left(x_{i}\right)+\epsilon$	$y_{i} \log h_{\vec{w}}\left(x_{i}\right)+\left(1-y_{i}\right) \log \left(1-h_{\vec{w}}\left(x_{i}\right)\right)$
0	1.0000001	-23.2535
0	0	0
1	1	0
1	0.0000001	-23.2535
1	0.8	-0.3219281
1	0.2	-2.321928

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value
- More dimensions
- $\vec{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$ (n dimensions)
- Input vector \vec{x} with $n-1$ dimensions
- Hypothesis function: $h_{\vec{w}}(x)=w_{n} x_{n}+w_{n-1} x_{n-1}+\ldots w_{1} x_{1}+w_{0}$
- w_{0} : y-intercept, w_{1} to w_{n} : slopes

More Dimensions

- Above: 1 dimension, 2 parameters
- a : slope, b : y-intercept
- Input feature x, a single value
- More dimensions
- $\vec{w}=\left\langle w_{0}, w_{1}, \ldots, w_{n}\right\rangle$ (n dimensions)
- Input vector \vec{x} with $n-1$ dimensions
- Hypothesis function: $h_{\vec{w}}(x)=w_{n} x_{n}+w_{n-1} x_{n-1}+\ldots w_{1} x_{1}+w_{0}$
- w_{0} : y-intercept, w_{1} to w_{n} : slopes
- Algorithms
- Derivatives more complicated
- Otherwise identical

Section 2
Summary

Summary

Regression

- Fitting parameters to a data distribution
- Linear R: Numeric prediction algorithm
- Prediction model: $h_{\vec{w}}(x)=a x+b$
- Logistic R: Classification algorithm (because we interpret results as probabilities)
- Prediction model: $h_{\vec{w}}(x)=\frac{1}{e^{-(b+a x)}}$
- Learning algorithm: Gradient descent

Gradient Descent

- Initialise \vec{w} with random values (e.g., 0)
- Repeat:
- Find the direction to the minimum by taking the derivative
- Change \vec{w} accordingly, using a learning rate η
- Stop when \vec{w} don't change anymore

