
Deep Learning
Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

11-01-2024

Evaluation der Veranstaltung

Zugänglich bis 17.01.2024 23:59:00 Uhr!

https://uzk-evaluation.uni-koeln.de/evasys/online.php?pswd=6K8QK

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 2 / 40

https://uzk-evaluation.uni-koeln.de/evasys/online.php?pswd=6K8QK

Semesterende-Party

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 3 / 40

Today

Sequential Data

Recurrent Neural Networks

Long Short-Term Memory (LSTM)

Exercise

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 4 / 40

Section 1

Sequential Data

Sequential Data

Introduction

» So far: ›bag of words‹
» We count the number of times a word appears in a text

» This is not how language works
Example

After the bad predecessor, this movie was very good.
After the good predecessor, this movie was very bad.

Both sentences have the same feature vector, but different meanings
» Convolution: Take multi-word structures into account
» CNNs mostly used for image recognition

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 6 / 40

Sequential Data

Introduction

» So far: ›bag of words‹
» We count the number of times a word appears in a text
» This is not how language works

Example
After the bad predecessor, this movie was very good.
After the good predecessor, this movie was very bad.

Both sentences have the same feature vector, but different meanings
» Convolution: Take multi-word structures into account

» CNNs mostly used for image recognition

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 6 / 40

Sequential Data

Introduction

» So far: ›bag of words‹
» We count the number of times a word appears in a text
» This is not how language works

Example
After the bad predecessor, this movie was very good.
After the good predecessor, this movie was very bad.

Both sentences have the same feature vector, but different meanings
» Convolution: Take multi-word structures into account
» CNNs mostly used for image recognition

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 6 / 40

Sequential Data

Intuition
» Moving window over the input
» For each window, we apply logistic regression
» And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 7 / 40

Sequential Data

Intuition
» Moving window over the input
» For each window, we apply logistic regression
» And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 8 / 40

Sequential Data

Intuition
» Moving window over the input
» For each window, we apply logistic regression
» And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 9 / 40

Sequential Data

Intuition
» Moving window over the input
» For each window, we apply logistic regression
» And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 10 / 40

Sequential Data

1D Convolution

Figure: A 1D convolutional layer of size 4 (strides = 1)

» Requires a 2D input shape – because of embeddings!
(if you’re not using embeddings, each token can be coded as a vector of length 1)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 11 / 40

Sequential Data

Convolution in Two Dimensions (e.g., images)

Figure: 2D convolutional layer (Skansi, 2018, p. 124)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 12 / 40

Sequential Data

Sequential Text Data

» Language works sequentially
Word meaning depends on context

» Feedforward neural networks
One instance (titanic passenger, document, . . .) at a time

» Convolutional neural networks
Windows of fixed lengths over the data

» Both are conceptually not adequate for natural language
» Length of influencing context varies
» Recurrent neural networks are one solution to this problem

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 13 / 40

Sequential Data

Sequential Text Data

» Language works sequentially
Word meaning depends on context

» Feedforward neural networks
One instance (titanic passenger, document, . . .) at a time

» Convolutional neural networks
Windows of fixed lengths over the data

» Both are conceptually not adequate for natural language
» Length of influencing context varies
» Recurrent neural networks are one solution to this problem

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 13 / 40

Sequential Data

Sequential Text Data

» Language works sequentially
Word meaning depends on context

» Feedforward neural networks
One instance (titanic passenger, document, . . .) at a time

» Convolutional neural networks
Windows of fixed lengths over the data

» Both are conceptually not adequate for natural language
» Length of influencing context varies

» Recurrent neural networks are one solution to this problem

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 13 / 40

Sequential Data

Sequential Text Data

» Language works sequentially
Word meaning depends on context

» Feedforward neural networks
One instance (titanic passenger, document, . . .) at a time

» Convolutional neural networks
Windows of fixed lengths over the data

» Both are conceptually not adequate for natural language
» Length of influencing context varies
» Recurrent neural networks are one solution to this problem

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 13 / 40

Section 2

Recurrent Neural Networks

Recurrent Neural Networks

Sequence Labeling

» So far: Classification
» Sequence labeling

Special case of classification
Instances are organized sequentially and dependent of each other

I.e.: The prediction for one class influences the next

Examples

» Part of speech tagging
»the dog barks« → »DET NN VBZ«

» Named entity recognition, mention detection
»John Bercow says he has changed allegiances to join Labour«
→ »B-PER I-PER O O O O O O O B-ORG«

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 15 / 40

Recurrent Neural Networks

Sequence Labeling

» So far: Classification
» Sequence labeling

Special case of classification
Instances are organized sequentially and dependent of each other

I.e.: The prediction for one class influences the next

Examples

» Part of speech tagging
»the dog barks« → »DET NN VBZ«

» Named entity recognition, mention detection
»John Bercow says he has changed allegiances to join Labour«
→ »B-PER I-PER O O O O O O O B-ORG«

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 15 / 40

Recurrent Neural Networks

BIO Scheme

» Named entity recognition is complicated
Not every token is part of a named entity (NE)
Many named entities span multiple tokens
We distinguish NEs based on the ontological type of the referent

PERson, ORGanization, LOCation, . . .

» BIO scheme
How to represent NE annotations token-wise
Each token gets a label

B: Beginning of a NE
I: Inside of a NE
O: Outside of a NE (the majority of tokens)

» Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence

». . . hat Peter Schneider Maria Müller geküsst« → »O B-PER I-PER B-PER I-PER O«

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 16 / 40

Recurrent Neural Networks

BIO Scheme

» Named entity recognition is complicated
Not every token is part of a named entity (NE)
Many named entities span multiple tokens
We distinguish NEs based on the ontological type of the referent

PERson, ORGanization, LOCation, . . .
» BIO scheme

How to represent NE annotations token-wise
Each token gets a label

B: Beginning of a NE
I: Inside of a NE
O: Outside of a NE (the majority of tokens)

» Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence

». . . hat Peter Schneider Maria Müller geküsst« → »O B-PER I-PER B-PER I-PER O«

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 16 / 40

Recurrent Neural Networks

BIO Scheme

» Named entity recognition is complicated
Not every token is part of a named entity (NE)
Many named entities span multiple tokens
We distinguish NEs based on the ontological type of the referent

PERson, ORGanization, LOCation, . . .
» BIO scheme

How to represent NE annotations token-wise
Each token gets a label

B: Beginning of a NE
I: Inside of a NE
O: Outside of a NE (the majority of tokens)

» Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence

». . . hat Peter Schneider Maria Müller geküsst« → »O B-PER I-PER B-PER I-PER O«

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 16 / 40

Recurrent Neural Networks

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as in Session 2)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 17 / 40

Recurrent Neural Networks

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as in Session 2)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 17 / 40

Recurrent Neural Networks

Towards Recurrent Neural Networks

» To work with sequences, we need to include the sequence into the model

Notation
X = (X1, X2, . . .) The input data set with instances
Xi = (x1, x2, . . .) One instance with feature values

Yi Output for instance Xi

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 18 / 40

Recurrent Neural Networks

Towards Recurrent Neural Networks

X b21 Y

Figure: A simple neural network with 1 hidden layer

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 19 / 40

Recurrent Neural Networks

Recurrent Neural Networks

X1 b21 Y1

Se
qu

en
ce X2 b21 Y2

X3 b21 Y3

X4 b21 Y4

This is a single
neuron at different times!

Figure: Recurrent Neural Network (unfolded)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 20 / 40

Recurrent Neural Networks

Recurrent Neural Networks

X1 b21 Y1
Se

qu
en

ce X2 b21 Y2

X3 b21 Y3

X4 b21 Y4

This is a single
neuron at different times!

Figure: Recurrent Neural Network (unfolded)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 20 / 40

Recurrent Neural Networks

Recurrent Neural Networks

X1 b21 Y1
Se

qu
en

ce X2 b21 Y2

X3 b21 Y3

X4 b21 Y4

This is a single
neuron at different times!

Figure: Recurrent Neural Network (unfolded)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 20 / 40

Recurrent Neural Networks

Recurrent Neural Networks

X1 b21 Y1
Se

qu
en

ce X2 b21 Y2

X3 b21 Y3

X4 b21 Y4

This is a single
neuron at different times!

Figure: Recurrent Neural Network (unfolded)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 20 / 40

Recurrent Neural Networks

Recurrent Neural Networks

X b21 Y

t+1

Figure: A recurrent neural network with 1 hidden layer (folded). Squares represent sequentially used
neurons.

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 21 / 40

Recurrent Neural Networks

Recurrent Neural Networks
Example with multiple features per instance

y

x1

x2

b1

b2

b3

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 22 / 40

Recurrent Neural Networks

Recurrent Neural Networks
Example with multiple features per instance

se
qu

en
ce

y

x1

x2

b1

b2

b3

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 23 / 40

Recurrent Neural Networks

Recurrent Neural Networks
Example with multiple features per instance

se
qu

en
ce

y

x1

x2

b1

b2

b3

y

x1

x2

b1

b2

b3

recurrent connection

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 23 / 40

Recurrent Neural Networks

Recurrent Neural Networks
Example with multiple features per instance

se
qu

en
ce

y

x1

x2

b1

b2

b3

y

x1

x2

b1

b2

b3

recurrent connection

y

x1

x2

b1

b2

b3

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 23 / 40

Recurrent Neural Networks

Recurrent Neural Networks

» FFNN, CNN: Weights between neurons
» RNN

Weights between neurons
Weight(s) for recurrent connections

Input shape
RNN layers need 2D input:

» Length of input sequences (if needed, padded)
» Number of features (dimensions)

(this is where embeddings would go)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 24 / 40

Recurrent Neural Networks

Recurrent Neural Networks

» FFNN, CNN: Weights between neurons
» RNN

Weights between neurons
Weight(s) for recurrent connections

Input shape
RNN layers need 2D input:

» Length of input sequences (if needed, padded)
» Number of features (dimensions)

(this is where embeddings would go)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 24 / 40

Recurrent Neural Networks

Implementation in keras

» tf.keras.layers.SimpleRNN

Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/
Selected parameters:
recurrent_dropout=0.0 Dropout for recurrent links
return_sequences=False Wether to return the entire sequence or just the last element

1 model .add(layers . SimpleRNN (...))

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 25 / 40

https://keras.io/api/layers/recurrent_layers/simple_rnn/

Section 3

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

Issues with RNNs

» Single neuron that transmits information along the sequence
» Long-distance information gets lost, because short-distance information is more prominent
» Slow because of the increased complexity
» Problem of vanishing and exploding gradients
» But: First architecture to process sequences as sequences

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 27 / 40

Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM)

» Most often used architecture for sequence labeling tasks
» Sub type of a recurrent layer
» Recurrent layer

Simple neuron, one connection along the sequence
» LSTM

Hochreiter and Schmidhuber (1997)
A neuron with more internal structure (often called »cell« or »unit«)
Two connections along the sequence

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 28 / 40

Long Short-Term Memory (LSTM)

Recurrent Layer

Se
qu

en
ce

X1 Y1

X2 Y2

X3 Y3

X4 Y4

Figure: Recurrent Neural Network

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 29 / 40

Long Short-Term Memory (LSTM)

LSTM Layers

Se
qu

en
ce

X1 Y1

X2 Y2

X3 Y3

X4 Y4

Figure: Neural Network with an LSTM Layer

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 30 / 40

Long Short-Term Memory (LSTM)

LSTM Cells

» Two connections along the sequence
h: The regular history of outcomes

I.e., the outcome of a neuron is passed into the neuron for the next sequence element
C: A state for the cell

Allows long-term storage

» Cell state is controlled within the cell
Forget: Previous state is removed
Input: Current input is (partially) stored in the cell state
Output: How much of the cell state is added to the cell output

» All ›gates‹ are controlled by weights, learned during training

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 31 / 40

Long Short-Term Memory (LSTM)

LSTM Cells

» Two connections along the sequence
h: The regular history of outcomes

I.e., the outcome of a neuron is passed into the neuron for the next sequence element
C: A state for the cell

Allows long-term storage
» Cell state is controlled within the cell

Forget: Previous state is removed
Input: Current input is (partially) stored in the cell state
Output: How much of the cell state is added to the cell output

» All ›gates‹ are controlled by weights, learned during training

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 31 / 40

Long Short-Term Memory (LSTM)

An LSTM Cell

Se
qu

en
ce

t

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

sigma

sigma

sigma

tanh

×

×

×

+

tanh

tanh

activation function
sigmoid: [0; 1]
tanh: [−1; 1]

+ arithmetical operator

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 32 / 40

Long Short-Term Memory (LSTM)

An LSTM Cell
with labeled connections

Se
qu

en
ce

t

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

τ

activation function
σ : [0; 1]
τ : [−1; 1]

+ arithmetical operator

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 33 / 40

Long Short-Term Memory (LSTM)

An LSTM Cell
Forget Gate

f(t) = σ (w⃗f × (xt + h(t − 1)))

» How much of the cell state do
we forget?

» If f(t) = 0, cell state is emptied
» w⃗f : Trainable weights for this

gate

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 34 / 40

Long Short-Term Memory (LSTM)

An LSTM Cell
Input Gate

How much of the current value is put
into the cell state?

ff(t) = σ (w⃗ff × (xt + h(t − 1)))
C∗(t) = τ (w⃗C × (xt + h(t − 1)))

i(t) = ff(t) × C∗(t)

» w⃗: trainable weights

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 35 / 40

Long Short-Term Memory (LSTM)

An LSTM Cell
Output Gate

How do we calculate the output(s) of
the cell?

» Three outputs:
y(t): regular output for the
next layer
h(t): passed on to the next
sequence element
C(t): new cell state

C(t) = f(t) × C(t − 1) + i(t)
fff(t) = σ (w⃗fff × (xt + h(t − 1)))

y(t) = fff(t) × τ(C(t))

x(t)

y(t)

h(t − 1) C(t − 1)

h(t) = y(t) C(t)

+

σ

σ

σ

τ

×

×

×

+

τ

f(t)

fff(t)

C∗(t)

ff(t)

C(t)

i(t)

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 36 / 40

Long Short-Term Memory (LSTM)

An LSTM Unit

Cell state C(t)
» A LSTM unit has a cell state (used for the long-term memory)
» Three gates control the state of the cell – each with its own weight

Forget gate f(t): How much of the previous state is kept
f(t) = σ(w⃗f × (x(t) + h(t˘1)))

Input gate ff(t), C∗(t), i(t): How much of the current state is stored
ff(t) = σ(w⃗ff × (x(t) + h(t˘1))), C∗(t) = τ(w⃗C × (x(t) + h(t˘1))), i(t) = ff(t) × C∗(t)

Output gate fff(t): What do we push to the next unit and what do we give out
fff(t) = σ(w⃗fff (x(t) + h(t˘1)))
C(t) = f(t) × C(t˘1) + i(t)
h(t) = fff(t) × τ(C(t))

» Weights to be learned: w⃗f , w⃗ff , w⃗fff , w⃗C

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 37 / 40

Long Short-Term Memory (LSTM)

An LSTM Unit

Cell state C(t)
» A LSTM unit has a cell state (used for the long-term memory)
» Three gates control the state of the cell – each with its own weight

Forget gate f(t): How much of the previous state is kept
f(t) = σ(w⃗f × (x(t) + h(t˘1)))

Input gate ff(t), C∗(t), i(t): How much of the current state is stored
ff(t) = σ(w⃗ff × (x(t) + h(t˘1))), C∗(t) = τ(w⃗C × (x(t) + h(t˘1))), i(t) = ff(t) × C∗(t)

Output gate fff(t): What do we push to the next unit and what do we give out
fff(t) = σ(w⃗fff (x(t) + h(t˘1)))
C(t) = f(t) × C(t˘1) + i(t)
h(t) = fff(t) × τ(C(t))

» Weights to be learned: w⃗f , w⃗ff , w⃗fff , w⃗C

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 37 / 40

Long Short-Term Memory (LSTM)

An LSTM Unit

Cell state C(t)
» A LSTM unit has a cell state (used for the long-term memory)
» Three gates control the state of the cell – each with its own weight

Forget gate f(t): How much of the previous state is kept
f(t) = σ(w⃗f × (x(t) + h(t˘1)))

Input gate ff(t), C∗(t), i(t): How much of the current state is stored
ff(t) = σ(w⃗ff × (x(t) + h(t˘1))), C∗(t) = τ(w⃗C × (x(t) + h(t˘1))), i(t) = ff(t) × C∗(t)

Output gate fff(t): What do we push to the next unit and what do we give out
fff(t) = σ(w⃗fff (x(t) + h(t˘1)))
C(t) = f(t) × C(t˘1) + i(t)
h(t) = fff(t) × τ(C(t))

» Weights to be learned: w⃗f , w⃗ff , w⃗fff , w⃗C

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 37 / 40

Long Short-Term Memory (LSTM)

An LSTM Unit

Cell state C(t)
» A LSTM unit has a cell state (used for the long-term memory)
» Three gates control the state of the cell – each with its own weight

Forget gate f(t): How much of the previous state is kept
f(t) = σ(w⃗f × (x(t) + h(t˘1)))

Input gate ff(t), C∗(t), i(t): How much of the current state is stored
ff(t) = σ(w⃗ff × (x(t) + h(t˘1))), C∗(t) = τ(w⃗C × (x(t) + h(t˘1))), i(t) = ff(t) × C∗(t)

Output gate fff(t): What do we push to the next unit and what do we give out
fff(t) = σ(w⃗fff (x(t) + h(t˘1)))
C(t) = f(t) × C(t˘1) + i(t)
h(t) = fff(t) × τ(C(t))

» Weights to be learned: w⃗f , w⃗ff , w⃗fff , w⃗C

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 37 / 40

Long Short-Term Memory (LSTM)

LSTM in Keras

layers.LSTM

» Docs: https://keras.io/api/layers/recurrent_layers/lstm/
» units – Number of LSTM units to create

corresponds to timesteps for RNNs

» Bi-LSTM
Best performance for many tasks
model.add(layers.Bidirectional(layers.LSTM(...)))

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 38 / 40

https://keras.io/api/layers/recurrent_layers/lstm/

Long Short-Term Memory (LSTM)

LSTM in Keras

layers.LSTM

» Docs: https://keras.io/api/layers/recurrent_layers/lstm/
» units – Number of LSTM units to create

corresponds to timesteps for RNNs
» Bi-LSTM

Best performance for many tasks
model.add(layers.Bidirectional(layers.LSTM(...)))

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 38 / 40

https://keras.io/api/layers/recurrent_layers/lstm/

Section 4

Exercise

Exercise

Exercise 09

https://github.com/IDH-Cologne-Deep-Learning-Uebung/exercise-09

Judith Nester (nester@uni-koeln.de) Deep Learning 11-01-2024 40 / 40

https://github.com/IDH-Cologne-Deep-Learning-Uebung/exercise-09

	Sequential Data
	Recurrent Neural Networks
	Long Short-Term Memory (LSTM)
	Exercise

