Deep Learning Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

11-01-2024

Evaluation der Veranstaltung

Zugänglich bis 17.01.2024 23:59:00 Uhr!

https://uzk-evaluation.uni-koeln.de/evasys/online.php?pswd=6K8QK

Judith Nester (nester@uni-koeln.de)

Deep Learning

Semesterende-Party

Hoch die Hände, Semesterende!

Kommt und feiert mit uns das Ende der Vorlesungszeit 2023/24!

Wann: Do., 01.02.2024 ab 18 Uhr Wo: IDH, Universitätsstr. 22, 1.0G

Für Bier und ein paar Snacks ist gesorgt.

A group of students and professors having a party to celebrate the end of the semester, pop art

Recurrent Neural Networks

Long Short-Term Memory (LSTM)

Exercise

Section 1

Sequential Data

Introduction

- » So far: >bag of words‹

Introduction

- » So far: >bag of words‹
- $\,\,{}^{\,\,}$ We count the number of times a word appears in a text
- » This is not how language works
 - Example
 - After the bad predecessor, this movie was very good.
 - After the good predecessor, this movie was very bad.
 - Both sentences have the same feature vector, but different meanings
- » Convolution: Take multi-word structures into account

Introduction

- » So far: >bag of words‹
- $\,\,{}^{\,\,}$ We count the number of times a word appears in a text
- » This is not how language works
 - Example
 - After the bad predecessor, this movie was very good.
 - After the good predecessor, this movie was very bad.
 - Both sentences have the same feature vector, but different meanings
- » Convolution: Take multi-word structures into account
- » CNNs mostly used for image recognition

- » Moving window over the input
- » For each window, we apply logistic regression
- » And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de)

Deep Learning

- » Moving window over the input
- » For each window, we apply logistic regression
- » And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de)

Deep Learning

11-01-2024

- » Moving window over the input
- » For each window, we apply logistic regression
- » And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de)

- » Moving window over the input
- » For each window, we apply logistic regression
- » And continue with a slightly shorter vector

Figure: A 1D convolutional layer of size 4 (strides = 1)

Judith Nester (nester@uni-koeln.de)

Deep Learning

11-01-2024

1D Convolution

Figure: A 1D convolutional layer of size 4 (strides = 1)

- » Requires a 2D input shape because of embeddings!
 - (if you're not using embeddings, each token can be coded as a vector of length 1)

Convolution in Two Dimensions (e.g., images)

Figure: 2D convolutional layer (Skansi, 2018, p. 124)

Judith Nester (nester@uni-koeln.de)

Deep Learning

- » Language works sequentially
 - Word meaning depends on context

- » Language works sequentially
 - Word meaning depends on context
- » Feedforward neural networks
 - One instance (titanic passenger, document, ...) at a time
- » Convolutional neural networks
 - Windows of fixed lengths over the data

- » Language works sequentially
 - Word meaning depends on context
- » Feedforward neural networks
 - One instance (titanic passenger, document, ...) at a time
- » Convolutional neural networks
 - Windows of fixed lengths over the data
- » Both are conceptually not adequate for natural language
- » Length of influencing context varies

- » Language works sequentially
 - Word meaning depends on context
- » Feedforward neural networks
 - One instance (titanic passenger, document, ...) at a time
- » Convolutional neural networks
 - Windows of fixed lengths over the data
- » Both are conceptually not adequate for natural language
- » Length of influencing context varies
- » Recurrent neural networks are one solution to this problem

Section 2

Recurrent Neural Networks

Sequence Labeling

- » So far: Classification
- » Sequence labeling
 - Special case of classification
 - Instances are organized sequentially and dependent of each other
 - I.e.: The prediction for one class influences the next

Sequence Labeling

- » So far: Classification
- » Sequence labeling
 - Special case of classification
 - Instances are organized sequentially and dependent of each other
 - I.e.: The prediction for one class influences the next

Examples

- » Part of speech tagging
 - \blacksquare »the dog barks« \rightarrow »DET NN VBZ«
- $\, {\scriptscriptstyle >\!\!\!>} \,$ Named entity recognition, mention detection
 - »John Bercow says he has changed allegiances to join Labour« → »B-PER I-PER O O O O O O O O B-ORG«

BIO Scheme

- » Named entity recognition is complicated
 - Not every token is part of a named entity (NE)
 - Many named entities span multiple tokens
 - We distinguish NEs based on the ontological type of the referent
 - PERson, ORGanization, LOCation, ...

BIO Scheme

- » Named entity recognition is complicated
 - Not every token is part of a named entity (NE)
 - Many named entities span multiple tokens
 - We distinguish NEs based on the ontological type of the referent
 - PERson, ORGanization, LOCation, ...
- » BIO scheme
 - How to represent NE annotations token-wise
 - Each token gets a label
 - B: Beginning of a NE
 - I: Inside of a NE
 - O: Outside of a NE (the majority of tokens)

BIO Scheme

- » Named entity recognition is complicated
 - Not every token is part of a named entity (NE)
 - Many named entities span multiple tokens
 - We distinguish NEs based on the ontological type of the referent
 - PERson, ORGanization, LOCation, ...
- » BIO scheme
 - How to represent NE annotations token-wise
 - Each token gets a label
 - B: Beginning of a NE
 - I: Inside of a NE
 - O: Outside of a NE (the majority of tokens)
- » Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct sequence
 - \blacksquare »... hat Peter Schneider Maria Müller geküsst« \rightarrow »O B-PER I-PER B-PER I-PER O«

Towards Recurrent Neural Networks

Figure: A feedforward neural network with 1 hidden layer (same picture as in Session 2)

Judith Nester (nester@uni-koeln.de)

Deep Learning

Towards Recurrent Neural Networks

Figure: A feedforward neural network with 1 hidden layer (same picture as in Session 2)

Judith Nester (nester@uni-koeln.de)

Deep Learning

11-01-2024

Towards Recurrent Neural Networks

» To work with sequences, we need to include the sequence into the model

Notation

 $X=(X_1,X_2,\dots)$ The input data set with instances $X_i=(x_1,x_2,\dots)$ One instance with feature values Y_i Output for instance X_i

Towards Recurrent Neural Networks

Figure: A simple neural network with 1 hidden layer

Recurrent Neural Networks

Figure: Recurrent Neural Network (unfolded)

Recurrent Neural Networks

Figure: Recurrent Neural Network (unfolded)

Recurrent Neural Networks

Figure: Recurrent Neural Network (unfolded)

Recurrent Neural Networks

Figure: Recurrent Neural Network (unfolded)

Judith Nester (nester@uni-koeln.de)

Deep Learning

Recurrent Neural Networks

Figure: A recurrent neural network with 1 hidden layer (folded). Squares represent sequentially used neurons.

Recurrent Neural Networks

Example with multiple features per instance

Judith Nester (nester@uni-koeln.de)

Recurrent Neural Networks

Example with multiple features per instance

Recurrent Neural Networks

Example with multiple features per instance

Example with multiple features per instance

- » FFNN, CNN: Weights between neurons
- » RNN
 - Weights between neurons
 - Weight(s) for recurrent connections

- » FFNN, CNN: Weights between neurons
- » RNN
 - Weights between neurons
 - Weight(s) for recurrent connections

Input shape

RNN layers need 2D input:

- » Length of input sequences (if needed, padded)
- » Number of features (dimensions)
 - (this is where embeddings would go)

Implementation in keras

- >> tf.keras.layers.SimpleRNN
 - Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/ Selected parameters:
 - recurrent_dropout=0.0 Dropout for recurrent links
 - return_sequences=False Wether to return the entire sequence or just the last element

1 model.add(layers.SimpleRNN(...))

Section 3

Long Short-Term Memory (LSTM)

Issues with RNNs

- » Single neuron that transmits information along the sequence
- » Long-distance information gets lost, because short-distance information is more prominent
- » Slow because of the increased complexity
- » Problem of vanishing and exploding gradients
- » But: First architecture to process sequences as sequences

Long Short-Term Memory (LSTM)

- » Most often used architecture for sequence labeling tasks
- » Sub type of a recurrent layer
- » Recurrent layer
 - Simple neuron, one connection along the sequence
- » LSTM
 - Hochreiter and Schmidhuber (1997)
 - A neuron with more internal structure (often called »cell« or »unit«)
 - Two connections along the sequence

Recurrent Layer

 X_1 Y_1 X_2 Y_2 Sequence X_3 Y_3 X_4 Y_4

Figure: Recurrent Neural Network

Judith Nester (nester@uni-koeln.de)

Deep Learning

11-01-2024

LSTM Layers

Figure: Neural Network with an LSTM Layer

Judith Nester (nester@uni-koeln.de)

Deep Learning

11-01-2024

LSTM Cells

- » Two connections along the sequence
 - *h*: The regular history of outcomes
 - I.e., the outcome of a neuron is passed into the neuron for the next sequence element
 - C: A state for the cell
 - Allows long-term storage

LSTM Cells

- » Two connections along the sequence
 - *h*: The regular history of outcomes
 - I.e., the outcome of a neuron is passed into the neuron for the next sequence element
 - C: A state for the cell
 - Allows long-term storage
- » Cell state is controlled within the cell
 - Forget: Previous state is removed
 - Input: Current input is (partially) stored in the cell state
 - Output: How much of the cell state is added to the cell output
- » All)gates(are controlled by weights, learned during training

An LSTM Cell

Deep Learning

An LSTM Cell

with labeled connections

Deep Learning

An LSTM Cell Forget Gate

$$f(t) = \sigma \left(\vec{w}_f \times (x_t + h(t-1)) \right)$$

- » How much of the cell state do we forget?
- » If f(t) = 0, cell state is emptied
- » $\vec{w_f}$: Trainable weights for this gate

An LSTM Cell

Input Gate

How much of the current value is put into the cell state?

$$ff(t) = \sigma \left(\vec{w}_{ff} \times (x_t + h(t-1)) \right)$$

$$C^*(t) = \tau \left(\vec{w}_C \times (x_t + h(t-1)) \right)$$

$$i(t) = ff(t) \times C^*(t)$$

» \vec{w} : trainable weights

An LSTM Cell

Output Gate

How do we calculate the output(s) of the cell?

- » Three outputs:
 - y(t): regular output for the next layer
 - h(t): passed on to the next sequence element
 - C(t): new cell state

$$C(t) = f(t) \times C(t-1) + i(t)$$

$$fff(t) = \sigma \left(\vec{w}_{fff} \times (x_t + h(t-1)) \right)$$

$$y(t) = fff(t) \times \tau(C(t))$$

Cell state C(t)

- » A LSTM unit has a cell state (used for the long-term memory)
- - \blacksquare Forget gate f(t) : How much of the previous state is kept
 - $f(t) = \sigma(\vec{w_f} \times (x(t) + h(t^{\vee}1)))$

Cell state C(t)

- » A LSTM unit has a cell state (used for the long-term memory)
- » Three gates control the state of the cell each with its own weight
 - Forget gate f(t): How much of the previous state is kept

• $f(t) = \sigma(\vec{w_f} \times (x(t) + h(t^{\sim}1)))$

Input gate ff(t), $C^*(t)$, i(t): How much of the current state is stored

• $ff(t) = \sigma(\vec{w}_{ff} \times (x(t) + h(t^{`}1))), C^{*}(t) = \tau(\vec{w}_{C} \times (x(t) + h(t^{`}1))), i(t) = ff(t) \times C^{*}(t)$

Cell state C(t)

- » A LSTM unit has a cell state (used for the long-term memory)
- » Three gates control the state of the cell each with its own weight
 - Forget gate f(t): How much of the previous state is kept

• $f(t) = \sigma(\vec{w_f} \times (x(t) + h(t^{\vee}1)))$

Input gate ff(t), $C^*(t)$, i(t): How much of the current state is stored

• $ff(t) = \sigma(\vec{w}_{ff} \times (x(t) + h(t^{`1}))), C^{*}(t) = \tau(\vec{w}_{C} \times (x(t) + h(t^{`1}))), i(t) = ff(t) \times C^{*}(t)$

• Output gate fff(t): What do we push to the next unit and what do we give out

•
$$fff(t) = \sigma(\vec{w}_{fff}(x(t) + h(t^{\vee}1)))$$

•
$$C(t) = f(t) \times C(t^{\circ}1) + i(t)$$

•
$$h(t) = fff(t) \times \tau(C(t))$$

Cell state C(t)

- » A LSTM unit has a cell state (used for the long-term memory)
- - Forget gate f(t): How much of the previous state is kept

• $f(t) = \sigma(\vec{w_f} \times (x(t) + h(t^{\sim}1)))$

Input gate ff(t), $C^*(t)$, i(t): How much of the current state is stored

• $ff(t) = \sigma(\vec{w}_{ff} \times (x(t) + h(t^{`1}))), C^{*}(t) = \tau(\vec{w}_{C} \times (x(t) + h(t^{`1}))), i(t) = ff(t) \times C^{*}(t)$

• Output gate fff(t): What do we push to the next unit and what do we give out

•
$$fff(t) = \sigma(\vec{w}_{fff}(x(t) + h(t^{`}1)))$$

• $C(t) = f(t) \times C(t^{`}1) + i(t)$
• $h(t) = fff(t) \times \tau(C(t))$

» Weights to be learned: $ec{w}_{f}$, $ec{w}_{ff}$, $ec{w}_{fff}$, $ec{w}_{C}$

LSTM in Keras

layers.LSTM

- » Docs: https://keras.io/api/layers/recurrent_layers/lstm/
- $\,$ » units Number of LSTM units to create
 - corresponds to timesteps for RNNs

LSTM in Keras

layers.LSTM

- » Docs: https://keras.io/api/layers/recurrent_layers/lstm/
- » units Number of LSTM units to create
 - corresponds to timesteps for RNNs
- » Bi-LSTM
 - Best performance for many tasks
 - model.add(layers.Bidirectional(layers.LSTM(...)))

Section 4

Exercise

Exercise

Exercise 09

https://github.com/IDH-Cologne-Deep-Learning-Uebung/exercise-09