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Recap

» Sequential Text Data
Text data organized in a chronological order
Information unfolds over time in a structured manner.

» RNN (Recurrent Neural Network)
Utilizes recurrent connections to capture temporal dependencies
Each network layer processes input while maintaining a hidden state
Well-suited for applications where context or order of input matters
Very slow, looses dependencies over long distances
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Recap

» LSTM (Long Short-Term Memory)
»Extended neurons« that can also store a state over long distances
Allows modeling (and learning) long distance dependencies in language

» Problems with LSTM
Very slow (even slower than basic RNNs)
Context that’s far away from the current timestep gets lost

» Also: What happens with sequence-to-sequence tasks when sequences are not equally
long?

E.g.: »I don’t know« → »Ich weiß nicht«
E.g.: »111101001010« → »3914«
Today: Encoder-Decoder-Networks
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Encoder-Decoder

Introduction
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Figure: Neural Network with
an LSTM Layer

» Each X value leads to a Y value
» Network has no way to skip a sequence

element
» Many real world sequence labeling tasks

are n-to-m-tasks
n elements in one sequence are
associated with m element in the other
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Encoder-Decoder

Encoder-Decoder-Architecture

» Network has two parts:
Encoder maps from input data to an internal representation
Decoder maps from internal representation to the output

» Internal representation
Use the output or internal state of last cell
Not interpretable
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Encoder-Decoder

Encoder-Decoder-Architecture in Keras

» Encoder
Regular input layer
LSTM-Layer with return_sequences=False

Because we don’t want a sequence as output, but just the output of the last cell
» Decoder

Every output sequence element gets the ›internal representation‹ as input
Thus, it needs to be repeated with the RepeatVector() layer

LSTM-Layer with return_sequences=True

Because now, we want the sequence
Output layer as before

With one-hot-encoding for multi-class problems
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Encoder-Decoder

Encoder-Decoder-Architecture in Keras
The Code

1 model = models . Sequential ()
2 model .add( layers . Input ( shape =( INPUT_LENGTH ,)))
3 model .add( layers . Embedding ( input_dim = number_of_symbols , output_dim =64 ,))
4 model .add( layers .LSTM (64 , return_sequences = False ))
5 model .add( layers . RepeatVector ( OUTPUT_LENGTH ))
6 model .add( layers .LSTM (32 , return_sequences =True , dropout =0.2))
7 model .add( layers . Dense ( number_of_symbols *2, activation =’softmax ’))
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Encoder-Decoder

Encoder-Decoder Architecture

» Translation Tasks:
Often used in machine translation, text-to-speech, and image-to-text applications.

» Advantages:
Flexibility for various tasks.
Ability to learn complex mappings between input and output.

» Challenges:
Limited processing of long sequences.
Difficulties in maintaining long-term dependencies.
Limited parallelization options, leading to slower training times.
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Transformer

Transformer - A Revolutionary Encoder-Decoder Architecture

» Specific architecture for sequential data, introduced in "Attention is all you need" by
Vaswani et al. in 2017

» Utilizes self-attention mechanisms for effective sequence processing
» Self-attention layers for parallelized processing.
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Transformer

Benefits of Transformers

» Transformers do not process sequences in time steps, but perform processing in parallel
» They are fast
» Division in Encoder block and Decoder block makes Transformer architecture flexible
» Can be separated and rearranged to solve more than just translation tasks
» Good scalability for larger datasets and models
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Transformer

Applications

» Transformer structures find applications in various domains, e.g., computer vision
» Continued work on Transformer variants such as BERT, GPT, and their adaptations for

specific tasks
» Inspires a new generation of models in AI research
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Attention

Figure: Examples of attending to the correct object (Xu et al., 2015)
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Attention

Figure: Attention paid by a neural machine translation network (Bahdanau et al., 2015)
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Attention

Introduction

» A mechanism to allow the network to learn what to focus on
» Idea: Not all parts of the input are equally important

MT: »la zone économique européenne« → »the European Economic Area«, irrespective of
context

» Mirrows human reading/translating activities
» Developed for machine translation, then applied to other tasks

Dzmitry Bahdanau et al. (2015). »Neural Machine Translation by Jointly Learning to
Align and Translate«. In: 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings. Ed. by Yoshua
Bengio and Yann LeCun. url: http: // arxiv. org/ abs/ 1409. 0473
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Attention

Encoder-Decoder-Architecture
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Attention

Encoder-Decoder-Architecture with Attention Layers

» Text in the first language is passed
through the Encoder block

Input is converted into Embeddings and
added with Positional Encodings
Attention vector for each word,
representing the relevance of a word in
relation to its context

» Decoder block uses two Attention layers
and one Feedforward Network

Sentence in first language is mapped to a
representation of the same meaning in
the second language
Softmax function produces a probability
distribution
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Transfer Learning

Introduction

» Typical scenario
Large data set of newspaper texts
Small data set of texts in your domain

» Domain adaptation: Adapt your models from one domain to another
» Transfer learning: One way to do this
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Transfer Learning

Transfer Learning

» Recipe
Define a model, train it on large data set
Freeze the layers by setting trainable = False
Define a new model on top of the model
Train on smaller data set
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Transfer Learning

Transfer Learning
Components

» »Freeze the layers by setting trainable = False«
Training: Estimating weights of layers
Freezing: Disable weight updating
Some or all layers can be frozen
Not frozen layers are updated as usual

» »Define a new model on top of the model«
An entire model can be used similar to a layer!
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Transfer Learning

Example

1 input = Input ( shape =(12 ,))
2 emb = Embedding ( output_dim = 150)( input )
3 hl1 = Dense (150)( emb)
4 hl2 = Dense (1)( hl1)
5
6 base_model = Model ( inputs =input , outputs =hl2)
7 # train on large data set
8 base_model .fit (...)
9

10 # freeze
11 base_model . trainable = False
12
13 # define new model , using the base model as layer
14 input = Input ( shape =(21 ,))
15 x = base_model (input , training = False )
16 x = Dense (2)(x)
17 outputs = Dense (1)(x)
18 model = Model ( inputs =input , outputs = outputs )
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Hugging Face

Introduction

» An AI company that provides
A Python library for transformer models

Since 2.0 compatible with tensorflow/keras and PyTorch
A platform to share BERT models (e.g., for different languages) and/or data sets
Some paid services

Installation
1 pip install transformers
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Hugging Face

Code

1 import tensorflow as tf
2 from transformers import TFAutoModelForSequenceClassification
3
4 # Load model as keras model
5 model = TFAutoModelForSequenceClassification
6 . from_pretrained ("bert -base - cased ", num_labels =2)
7
8 # do the usual keras stuff
9 model . compile (...)

10
11 # fine - tuning
12 model .fit (...)

https://huggingface.co/transformers/training.html
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Exercise

Exercise 09

Take a look at the variety of Transformer models on Huggingface. Are there any models that
you might be able to use for your module exam? What data do they use? What kind of tasks
do they train on? Find the code and try to understand it. Next week we will look at a few
Transformer models together.
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