Deep Learning Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

01-02-2024

Studienleistung

Wer jetzt noch im Klips-Kurs ist, bekommt die Studienleistung. Bitte bei mir melden, falls es Redebedarf gibt!

» Encoder-Decoder

- Separation of the processing of input data from the generation of the output
- Encoder -> maps input data to an internal representation
- Decoder -> maps from internal representation to the output
- Advatages:
 - Flexibility for various tasks
 - Ability to learn complex mappings between input and output
- Challenges:
 - Limited processing of long sequences
 - Limited parallelization leading to slower training times

Recap

» Transformer

- Uses Encoder-Decoder Architecture with Attention mechanism
- Uses Attention mechanism to allow the network to learn what to focus on
- Processing of input data in parallel -> fast!
- Make it possible to divide Encoder and Decoder depending on the task
- Good scalability for larger datasets and models
- » Transfer Learning
 - Enables domain adaption by further "specialising" a pre-trained language model by finetuning it on a smaller, more specific data set
- » Hugging Face
 - A Python library for transformer models

4/24

BERT - Bidirectional Encoder Representation from Transformers

GermanBERT

Domain-specific BERT Models

GPT - Generative Pre-trained Transformer

We did it!

BERT - Bidirectional Encoder Representation from Transformers

Introduction

- » BERT (Bidirectional Encoder Representations from Transformers) has outperformed the state of the art in many NLP tasks
- » General idea
 - Encoder-Attention-Decoder architecture (= transformer)
 - Stacked Encoders (BASE: 12, LARGE: 24)
 - Process whole input at once (max. 512 tokens)
 - Bidirectional Context Modeling:
 - Consideration of entire context of a word within a sentence (both left and right)
 - Pre-training and fine-tuning on different tasks

Jacob Devlin et al. (2019). »BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding«. In: Proceedings of NAACL. Minneapolis, Minnesota: ACL, pp. 4171–4186. doi: 10.18653/v1/N19-1423

Pre-Training and Fine-Tuning

- » BERT models are trained on huge data sets
 - "Original" Training Data for BERT:
 - BookCorpus, Wikipedia, Web Data (not labeled!)
 - BERT-Base: > 3 Billion Tokens
 - BERT-Large: even more
- » Training one from scratch requires significant resources (time/money)
- » Pre-trained models are shared freely (for example on Huggingface)
- » Recipe: Take a pre-trained model and fine-tune it on your task
 - Pre-trained model contains an abstract language representation
- » Fine-tuning
 - Any language-related task!

Input Representation with BERT

- » Token Embeddings: WordPiece-Embeddings
- $\,$ » Segment Embeddings: indicates whether a token belongs to sentence A or B
- » Position Embeddings: position of tokens in a sentence; [CLS] = begin token; [SEP] = end token;

BERT Training Tasks

Masked Language Modeling (MLM)

- » Sentence-wise
- » 15% of the tokens are <code>»masked«</code> by a special token
- » Model predicts these, having access to all other tokens

BERT Training Tasks

Masked Language Modeling (MLM)

- » Sentence-wise
- » 15% of the tokens are <code>»masked«</code> by a special token
- » Model predicts these, having access to all other tokens

Next sentence prediction (NSP)

- » Two sentences are concatenated
- » Model has to predict wether second sentence follows on the first or not

GermanBERT

GermanBERT

- » Trained by Deepset Al
 - https://www.deepset.ai/german-bert
 - https://huggingface.co/bert-base-german-cased
- » BERT Model für deutsche Sprache

» Data:

- The latest German Wikipedia dump (2019) (6GB of raw txt files), the OpenLegalData dump (2.4 GB), and news articles (3.6 GB)
- » Outperforms multilingual versions of the original BERT Model
- » Also checkout GBERT (https://aclanthology.org/2020.coling-main.598/)

Model	germEval18Fine	germEval18Coarse	germEval14	CONLL03	10kGNAD
multilingual cased	0.441	0.71	0.834	0.792	0.888
multilingual uncased	0.461	0.731	0.823	0.786	0.901
German BERT cased (ours)	0.488	0.747	0.84	0.804	0.905

Judith Nester (nester@uni-koeln.de)

Domain-specific BERT Models

HateBERT

- » Trained by GroNLP (Natural Language Processing and Computational Linguistics group at the University of Groningen)
- » domain-specific for abusive language phenomena
- » Data:
 - RAL-E ("a large-scale dataset of Reddit comments in English from communities banned for being offensive, abusive, or hateful" - 43,379,350 tokens)

Tommaso Caselli et al. (2021). »HateBERT: Retraining BERT for Abusive Language Detection in English«. *In: Proceedings of the 5th Workshop on Online Abuse and Harms (WOAH 2021), pp. 17–25. doi: 10.18653/v1/2021.woah-1.3*

HateBERT

- $\,$ » Data was used to re-train BERT base-uncased on the MLM-Task
- » Result was a BERT Model with a shifted domain
- » HateBERT outperforms original BERT models in hate speech and abusive language tasks

BERT	HateBERT						
"women"							
excluded (.075) encouraged (.032) included (.027)	stu**d (.188) du*b (.128) id***s (.075)						

Table 1: MLM top 3 candidates for the templates "Women are [MASK.]".

Other examples

- » LEGAL-BERT
 - Legal Texts
 - https://huggingface.co/nlpaueb/legal-bert-base-uncased
- » BioBERT
 - Biomedical Texts
 - https://huggingface.co/dmis-lab/biobert-v1.1
- » FinBERT
 - Financial Texts
 - https://huggingface.co/ProsusAI/finbert

GPT - Generative Pre-trained Transformer

- » Trained by OpenAI
 - Commercial Large Language Model behind ChatGPT (https://chat.openai.com)
 - Open Source up to Version 3.5
- » Uses only Decoders in its architecture
- » Trained on unsupervised task of next-word prediction
 - Prediction of the next word in a sentence

GPT-2: Alex Radford et al. (2019). »Language Models are Unsupervised Multitask Learners«. *url:*

https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf GPT-3: Tom B. Brown et al. (2020). »Language Models are Few-Shot Learners«. doi: https://doi.org/10.48550/arXiv.2005.14165

GPT - Generative Pre-trained Transformer

- » Uses only Decoders in its architecture
- » Trained on data set of 300 billion tokens
- » Trained on unsupervised task of Next-word Prediction
 - Prediction of the next word in a sentence
 - Error is calculated and the model can be improved
 - Output is added to the input

GPT 3

Model Name	n_{params}	n_{layers}	d_{model}	$n_{\rm heads}$	d_{head}	Batch Size	Learning Rate
GPT-3 Small	125M	12	768	12	64	0.5M	$6.0 imes 10^{-4}$
GPT-3 Medium	350M	24	1024	16	64	0.5M	$3.0 imes10^{-4}$
GPT-3 Large	760M	24	1536	16	96	0.5M	$2.5 imes10^{-4}$
GPT-3 XL	1.3B	24	2048	24	128	$1\mathbf{M}$	$2.0 imes 10^{-4}$
GPT-3 2.7B	2.7B	32	2560	32	80	$1\mathbf{M}$	$1.6 imes10^{-4}$
GPT-3 6.7B	6.7B	32	4096	32	128	2M	$1.2 imes 10^{-4}$
GPT-3 13B	13.0B	40	5140	40	128	$2\mathbf{M}$	$1.0 imes 10^{-4}$
GPT-3 175B or "GPT-3"	175.0B	96	12288	96	128	3.2M	$0.6 imes10^{-4}$

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models which we trained. All models were trained for a total of 300 billion tokens.

Latest Exercise

Have you found any special Transformer models? Have you been inspired for a possible module exam topic?

We did it!

Ihr habt viel gelernt

- » Git basics
- » Python basics, installation issues
- » Logistic regression / gradient descent
- » Feed-forward neural networks
- » Training (Hyperparameter, Trouble Shooting)
- » Embeddings
- » Sequential Data
- » Recurrent and LSTM networks
- » Encoder/Decoder networks, Attention
- » Transformer

Figure: Dall.E2 ("University students enjoying their lecture-free time, pop art")