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Studienleistung

Wer jetzt noch im Klips-Kurs ist, bekommt die Studienleistung. Bitte bei mir melden, falls es
Redebedarf gibt!
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Recap

» Encoder-Decoder

m Separation of the processing of input data from the generation of the output
m Encoder -> maps input data to an internal representation
m Decoder -> maps from internal representation to the output
m Advatages:
o Flexibility for various tasks
@ Ability to learn complex mappings between input and output
Challenges:

o Limited processing of long sequences
o Limited parallelization leading to slower training times
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Recap

» Transformer

m Uses Encoder-Decoder Architecture with Attention mechanism

m Uses Attention mechanism to allow the network to learn what to focus on
m Processing of input data in parallel -> fast!

m Make it possible to divide Encoder and Decoder depending on the task

m Good scalability for larger datasets and models

» Transfer Learning

m Enables domain adaption by further "specialising" a pre-trained language model by finetuning
it on a smaller, more specific data set

» Hugging Face
m A Python library for transformer models
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Today

BERT - Bidirectional Encoder Representation from Transformers
GermanBERT

Domain-specific BERT Models

GPT - Generative Pre-trained Transformer

We did it!
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BERT - Bidirectional Encoder Representation from Transformers

Introduction

» BERT (Bidirectional Encoder Representations from Transformers) has outperformed the
state of the art in many NLP tasks
» General idea

m Encoder-Attention-Decoder architecture (= transformer)
m Stacked Encoders (BASE: 12, LARGE: 24)

m Process whole input at once (max. 512 tokens)

m Bidirectional Context Modeling:

o Consideration of entire context of a word within a sentence (both left and right)
m Pre-training and fine-tuning on different tasks

Jacob Devlin et al. (2019). »BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding«. In: Proceedings of NAACL. Minneapolis, Minnesota: ACL,
pp. 4171-4186. doi: 10.18653/v1/N19-1423
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BERT - Bidirectional Encoder Representation from Transformers

Pre-Training and Fine-Tuning

» BERT models are trained on huge data sets
m "Original" Training Data for BERT:

e BookCorpus, Wikipedia, Web Data (not labeled!)
e BERT-Base: > 3 Billion Tokens
o BERT-Large: even more

» Training one from scratch requires significant resources (time/money)
» Pre-trained models are shared freely (for example on Huggingface)
» Recipe: Take a pre-trained model and fine-tune it on your task
m Pre-trained model contains an abstract language representation
» Fine-tuning
m Any language-related task!
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BERT - Bidirectional Encoder Representation from Transformers

Input Representation with BERT
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-+ -+~ + -+ -+ -+ -+ -+ -+ +=

Segment

e TN EA|| NENEN N NN S
-+ -* - - -+ - -+ * - +

Position

Erweans: | B0 || & | & ][ & [ & ][ & Jle (& [ || & || & ]

» Token Embeddings: WordPiece-Embeddings
» Segment Embeddings: indicates whether a token belongs to sentence A or B

» Position Embeddings: position of tokens in a sentence; [CLS] = begin token; [SEP] = end
token;
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BERT - Bidirectional Encoder Representation from Transformers

BERT Training Tasks

Masked Language Modeling (MLM)
» Sentence-wise
» 15% of the tokens are nmasked« by a special token

» Model predicts these, having access to all other tokens
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BERT - Bidirectional Encoder Representation from Transformers

BERT Training Tasks

Masked Language Modeling (MLM)

» Sentence-wise

» 15% of the tokens are nmasked« by a special token

» Model predicts these, having access to all other tokens
Next sentence prediction (NSP)

» Two sentences are concatenated

» Model has to predict wether second sentence follows on the first or not
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GermanBERT

GermanBERT

» Trained by Deepset Al

m https://www.deepset.ai/german-bert
m https://huggingface.co/bert-base-german-cased

» BERT Model fiir deutsche Sprache

» Data:
m The latest German Wikipedia dump (2019) (6GB of raw txt files), the OpenLegalData dump
(2.4 GB), and news articles (3.6 GB)

» Outperforms multilingual versions of the original BERT Model
» Also checkout GBERT (https://aclanthology.org/2020.coling-main.598/)

Model germEvall8Fine  germEvall8Coarse germEvall4 CONLLO3 10kGNAD
multilingual cased 0.441 0.71 0.834 0.792 0.888
multilingual uncased 0.461 0.731 0.823 0.786 0.901
German BERT cased (ours) 0.488 0.747 0.84 0.804 0.905
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Domain-specific BERT Models

HateBERT

» Trained by GroNLP (Natural Language Processing and Computational Linguistics group
at the University of Groningen)
» domain-specific for abusive language phenomena
» Data:
m RAL-E ("a large-scale dataset of Reddit comments in English from communities banned for
being offensive, abusive, or hateful" - 43,379,350 tokens)
Tommaso Caselli et al. (2021). nHateBERT: Retraining BERT for Abusive Language

Detection in English«. In: Proceedings of the 5th Workshop on Online Abuse and Harms
(WOAH 2021), pp. 17-25. doi: 10.18653/v1,/2021.woah-1.3
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Domain-specific BERT Models

HateBERT

» Data was used to re-train BERT base-uncased on the MLM-Task
» Result was a BERT Model with a shifted domain

» HateBERT outperforms original BERT models in hate speech and abusive language tasks

BERT ‘ HateBERT

“women”

excluded (.075) stu**d (.188)
encouraged (.032) du®b (.128)
included (.027) 1d***s (,075)

Table 1: MLM top 3 candidates for the templates
“Women are [MASK.]".
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Domain-specific BERT Models

Other examples

» LEGAL-BERT

m Legal Texts
m https://huggingface.co/nlpaueb/legal-bert-base-uncased

» BioBERT

m Biomedical Texts
m https://huggingface.co/dmis-lab/biobert-vi.1

» FinBERT

m Financial Texts
m https://huggingface.co/ProsusAl/finbert
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GPT - Generative Pre-trained Transformer

GPT - Generative Pre-trained Transformer

» Trained by OpenAl

m Commercial Large Language Model behind ChatGPT (https://chat.openai.com)
m Open Source up to Version 3.5

» Uses only Decoders in its architecture
» Trained on unsupervised task of next-word prediction

m Prediction of the next word in a sentence

GPT-2: Alex Radford et al. (2019). nLanguage Models are Unsupervised Multitask
Learners«. url:
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf

GPT-3: Tom B. Brown et al. (2020). »nLanguage Models are Few-Shot Learners«. doi:
https://doi.org/10.48550/arXiv.2005.14165

Judith Nester (nester@uni-koeln.de) Deep Learning 01-02-2024 18 /24


https://chat.openai.com

GPT - Generative Pre-trained Transformer

GPT - Generative Pre-trained Transformer

» Uses only Decoders in its architecture

» Trained on data set of 300 billion tokens

» Trained on unsupervised task of Next-word Prediction

m Prediction of the next word in a sentence
m Error is calculated and the model can be improved
m Output is added to the input
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GPT - Generative Pre-trained Transformer

GPT 3

Model Name Nparams  Mlayers @model Theads Ohead Batch Size Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 1074
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 1074
GPT-3 Large 760M 24 1536 16 96 0.5M 25x 101
GPT-3 XL 1.3B 24 2048 24 128 M 2.0 x 1074
GPT-32.7B 2.7B 32 2560 32 80 IM 1.6 x 1074
GPT-3 6.7B 6.7B 32 4096 32 128 2M 1.2 x 10~%
GPT-3 13B 13.0B 40 5140 40 128 M 1.0 x 107*
GPT-3 175B or “GPT-3" 175.0B 96 12288 96 128 3.2M 0.6 x 10~4

Table 2.1: Sizes, architectures, and learning hyper-parameters (batch size in tokens and learning rate) of the models
which we trained. All models were trained for a total of 300 billion tokens.
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GPT - Generative Pre-trained Transformer

Latest Exercise

Have you found any special Transformer models? Have you been inspired for a possible
module exam topic?
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We did it!

lhr habt viel gelernt

» Git basics

» Python basics, installation issues

» Logistic regression / gradient descent

» Feed-forward neural networks

» Training (Hyperparameter, Trouble Shooting)
» Embeddings

» Sequential Data

» Recurrent and LSTM networks

» Encoder/Decoder networks, Attention

» Transformer
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Figure: Dall.E2 ("University students enjoying their lecture-free time, pop art")
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