Deep Learning Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

23-11-2023

Recap

» Exceptions

- Handle all kinds of runtime errors
- **raise** to throw errors
- try: ... except: to catch them
- » Python Packages
 - Use pip for installing python packages
- » Types of DL tasks
 - Summerization, Sentiment Analysis, Question Answering, ...
 - Text classification, sequence labeling
- » Classification
 - Different algorithms (Naive Bayes, Decision Trees, ...)
- » Learning algorithm and prediction model

Today

Regression Tasks and Linear Regression

Classification Tasks and Logistic Regression

Loss Function

Gradient Descent

Scikit-Learn

Exercise

Recap Prediction Model and Learning Algorithm

Recap Prediction Model and Learning Algorithm

Blackbox problem

- » We only know input (data) and output (i.e. f-score) of system
- » We have only limited insight into the exact processes within the neural network

Blackbox problem

- » We only know input (data) and output (i.e. f-score) of system
- » We have only limited insight into the exact processes within the neural network
- » A How then do we know if the system output is "good" or "bad"?

Blackbox problem

- » We only know input (data) and output (i.e. f-score) of system
- » We have only limited insight into the exact processes within the neural network
- » A How then do we know if the system output is "good" or "bad"?
- » Where we start: Understanding Learning Algorithms

Supervised learning

- » The correct result/label is known
- » System produces its own result/label (\hat{y}) (hypothesis function)
- » We want the produced result (\hat{y}) to be as close as possible to the real result (y)
- » Difference (loss) between y and \hat{y} is determined (loss function)
- » Loss is minimized as much as possible (optimization algorithm)

Section 1

Regression Tasks and Linear Regression

Regression

- » Predicting a set or quantity
- » Continuous variable -> Infinite number of possible values
 - e.g. age, distance, price, sales figures ...

Regression

- » Predicting a set or quantity
- » Continuous variable -> Infinite number of possible values
 - e.g. age, distance, price, sales figures ...

Example (Stock Price Prediction)

Can past stock prices be used to predict future stock prices?

Regression

- » Predicting a set or quantity
- » Continuous variable -> Infinite number of possible values
 - e.g. age, distance, price, sales figures ...

Example (Stock Price Prediction)

Can past stock prices be used to predict future stock prices?

- » dependent variable -> stock prices
 - always continuous for regression tasks
- » independent variable -> time
 - is used to predict dependent variable
- » linear dependency between variables

Lineare Regression

» Method for predicting **continuous values** (dependent variables) using independent variables

Lineare Regression

» Method for predicting **continuous values** (dependent variables) using independent variables

Lineare Regression

» Method for predicting **continuous values** (dependent variables) using independent variables

Section 2

Classification Tasks and Logistic Regression

Classification

- » Assigning *classes* to *objects/instances/items*
- » Binary (0 or 1, yes or no, A or B \dots) and multi-class classification possible

Classification

- » Assigning *classes* to *objects/instances/items*
- » Binary (0 or 1, yes or no, A or B \dots) and multi-class classification possible

Example (Nobel Prize Prediction)

Given the number of characters in a narrative text, will a book win the Nobel prize for literature?

- $\,$ > dependent variable –> WIN or LOSE, YES or NO \ldots
 - categorical value (labels/classes)
- $\,$ » independent variable –> number of characters in a narrative text
 - is used to predict dependent variable

$$y = \frac{1}{1+e^{-x}} = \frac{1}{1+e^{-(ax+b)}}$$

$$y = \frac{1}{1 + e^{-x}} = \frac{1}{1 + e^{-(ax+b)}}$$

Parameter Fitting

Linear RegressionLogisth(x) = ax + bax + b

Logistic Regression
$$h(x) = rac{1}{1+e^{-(ax+b)}}$$

Learning algorithm: How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?

Section 3

Loss Function

Loss: Intuition

Loss: Intuition

» How big is the gap between a hypothesis and the data? » Is (a,b) = (0.3,0.5) or (a,b) = (0.4,0.4) better?

Judith Nester (nester@uni-koeln.de)

Loss: Intuition

» How big is the gap between a hypothesis and the data? » Is $(a,b)=(0.3,0.5) \mbox{ or } (a,b)=(0.4,0.4)$ better?

Judith Nester (nester@uni-koeln.de)

Loss function: Intuition

- » Loss should be as small as possible
- » Total loss can be calculated for given parameters $\boldsymbol{\theta} = (a,b)$
- $\,$ > Hypothesis function h Calculates outcomes, given feature values x
- » Loss function \boldsymbol{J}

Calculates) wrongness(of h, given parameter values θ (and a data set)

 \blacksquare In reality, θ represents more than two parameters

Loss function

Loss function depends on hypothesis function

Linear » h(x) = ax + b» Loss: Mean squared error Logistic » $h(x) = \frac{1}{e^{-(b+ax)}}$ » Loss: (Binary) cross-entropy loss Not the only choice

Loss function

Loss function

Loss function

Now that we know the loss we want to minimize it!

Section 4

Gradient Descent

Gradient Descent

- » Initialise θ with random values (e.g., 0)
- » Repeat:
 - Find the direction to the minimum by taking the derivative
 - \blacksquare Change θ accordingly, using a learning rate η
 - Stop when θ don't change anymore

Gradient Descent

Section 5

Scikit-Learn

Introduction

- » Generic machine learning library for Python
- $\,$ » Classification algorithms: Naive Bayes, support vector machines, \ldots
- » Clustering algorithms: KMeans, agglomerative clustering, ...

Introduction

- » Generic machine learning library for Python
- $\,$ » Classification algorithms: Naive Bayes, support vector machines, \ldots
- $\,$ » Clustering algorithms: KMeans, agglomerative clustering, \ldots
- » Utility functions
 - Cross-validation, training and test splits
 - Evaluation (precision/recall/f-score)

Workflow

Preprocessing and Preparations

- » Preprocessing
 - Read in data files
 - Remove columns that we cannot handle or columns that we feel are irrelevant
 - Convert features into numeric representations
 - Split into train and test data
 - Deal with missing values
 - Add additional features from other resources

...

Workflow

Preprocessing and Preparations

- » Preprocessing
 - Read in data files
 - Remove columns that we cannot handle or columns that we feel are irrelevant
 - Convert features into numeric representations
 - Split into train and test data
 - Deal with missing values
 - Add additional features from other resources
 - • •
- » Preparations
 - Split into x, y
 - Split into train and test
- » Machine learning \rightarrow next slide

Workflow Machine Learning

- » Initialize object cls = Classifier(...)
- » Call cls.fit(x_train, y_train) to train
- » Call $y_{pred} = cls.predict(x_test)$ to get predictions on the test set
- » Call $*_\texttt{score}(y_\texttt{test}, y_\texttt{pred})$ to calculate evaluation scores

Workflow Machine Learning

- » Initialize object cls = Classifier(...)
- » Call cls.fit(x_train, y_train) to train
- » Call $y_{pred} = cls.predict(x_test)$ to get predictions on the test set
- » Call $\ast_\texttt{score}(y_\texttt{test}, y_\texttt{pred})$ to calculate evaluation scores
- » »Initialize-fit-predict« pattern

Section 6

Exercise

Exercise

Exercise 04

https://github.com/IDH-Cologne-Deep-Learning-Uebung/exercise-05