Deep Learning Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

14-12-2023

Recap

Bag of words

- » Count words, disregard their order
- » Document \rightarrow vector \rightarrow input for neural network
- » scikit-learn: CountVectorizer

Recap

Bag of words

- » Count words, disregard their order
- » Document \rightarrow vector \rightarrow input for neural network
- » scikit-learn: CountVectorizer

Overfitting

- » Good performance on training data
- » Less performance on real-world data
- » No strict, deterministic decision
- » Regularization: Add something to loss function
- » Dropout: Randomly remove edges during training, force the network to create redundancies

Recap

Bag of words

- » Count words, disregard their order
- » Document \rightarrow vector \rightarrow input for neural network
- » scikit-learn: CountVectorizer

Overfitting

- » Good performance on training data
- » Less performance on real-world data
- » No strict, deterministic decision
- » Regularization: Add something to loss function
- » Dropout: Randomly remove edges during training, force the network to create redundancies

Exercise 7

Input Representation

Embeddings

Implementing Embeddings in Keras

Exercise

Judith Nester (nester@uni-koeln.de)

Section 1

Input Representation

Structured Data - Tables

- » i.e. Titanic data set
- » Objects (passengers) are described with the help of various properties (name, sex, ticket, age, cabin, ...)
- » Number of features gives us the input shape
- » Input that is not an integer is converted to an integer
- » Input is a vector with the size of the feature count

PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 2117
2	1	1	Cumings, Mrs. John Bradley (Flo	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2
4	1	1	Futrelle, Mrs. Jacques Heath (Lil	female	35	1	0	
5	0	3	Allen, Mr. William Henry	male	35	0	0	
6	0	3	Moran, Mr. James	male		0	0	
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	
9	1	3	Johnson, Mrs. Oscar W (Elisabe	female	27	0	2	
10	1	2	Naccar Mrs Nicholas (Adala Ac	famala	14	1	0	

. . .

Last Week: Bag of Words

- » Disregards word order and semantic
- » A vocabulary is established
- » Words are counted in order of vocabulary in a text
- » Size of vocabulary gives us the input shape
- » Input is a vector with the size of the vocabulary

Last Week: Bag of Words

- » Makes things a lot easier
- » But it's not how language works

Last Week: Bag of Words

- » Makes things a lot easier
- » But it's not how language works
- » Example
 - »This remake was even greater than the original.«
 - »Deciding to make the script into a 3D movie led to an even greater failure.«

The problem with natural language

- » Metaphors, ambiguities, synonyms, etc.
- » "Words that occur in similar contexts tend to have similar meanings." (Jurafski 2021)
- » Context is crucial for the meaning of a word

The problem with natural language

- » Metaphors, ambiguities, synonyms, etc.
- » "Words that occur in similar contexts tend to have similar meanings." (Jurafski 2021)
- » Context is crucial for the meaning of a word

Is there a way to represent a word so that the meaning of the word within the context is not lost?

Section 2

Embeddings

Motivation

- » An embedding is a mapping of words or documents to vectors
 - Things are >embedded< in a vector space

Motivation

- » An embedding is a mapping of words or documents to vectors
 - Things are >embedded< in a vector space
- » Why do we need this?
 - Classically, words are discrete symbols
 - For neural networks, each word is replaced by a word index

Motivation

- » An embedding is a mapping of words or documents to vectors
 - Things are >embedded< in a vector space
- » Why do we need this?
 - Classically, words are discrete symbols
 - For neural networks, each word is replaced by a word index
- » We can do better
 - Representing a word as a vector allows calculating similarity between words
 - If the embedding works well, similarity between words has meaning

Word Embeddings (after 2013)

Mikolov et al. 2013, Pennington et al. 2014, Bojanowski et al. 2016, ...

- » Dense representations of words in vector space
- » Word vectors: Weights learned by a simple neural network with a classification target
 - word2vec: Given word w_i , how likely is it that w_j appears in its context?
- » Idea
 - Embeddings are learned using a neural network
 - Classification task: Given a word, predict its context words
 - Training data in abundance
 - Use learned weights as embeddings

- » Existing (pre-trained) embeddings can be plugged in
- » Specific embeddings can be trained, just like all other weights

- » Existing (pre-trained) embeddings can be plugged in
- » Specific embeddings can be trained, just like all other weights

Pre-trained embeddings

- » Glove (Stanford University): https://nlp.stanford.edu/projects/glove/
- » FastText (facebook research): https://fasttext.cc (multiple languages)

- » Existing (pre-trained) embeddings can be plugged in
- » Specific embeddings can be trained, just like all other weights

Pre-trained embeddings

- » Glove (Stanford University): https://nlp.stanford.edu/projects/glove/
- » FastText (facebook research): https://fasttext.cc (multiple languages)

adventure 0.0292 -0.0269 0.0273 0.0792 -0.0617 0.1370 -0.0628 0.0420 0.0743 0.0979 -0.0136 0.0488 -0.0267 -0.0227 0.0592 0.0410 0.0314 0.0378 -0.0455 0.0616 -0.0380 0.0232 -0.0218 0.0000 -0.0699 -0.1327 -0.0393 0.0467 0.0413 0.0089 -0.0046 0.0372 -0.0590 0.0740 0.0214 0.0625 0.0067 -0.0063 0.0218 -0.0447 -0.0298 0.0186 -0.0207 0.0158 -0.0508 -0.0297 -0.0807 -0.0619 -0.0194 -0.0153 0.0909 -0.0037 0.0999 -0.0110 ...

» This changes the input data shape

This	is	а	great	adventure	
------	----	---	-------	-----------	--

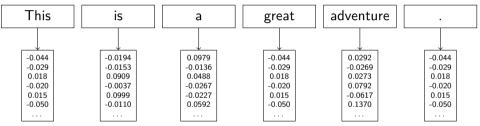
» This changes the input data shape

This	is	а	great	adventure	
------	----	---	-------	-----------	--

» This changes the input data shape

This	is	а	great	adventure		
-0.044	-0.0194	0.0979	-0.044	0.0292	-0.044	
-0.029	-0.0153	-0.0136	-0.029	-0.0269	-0.029	
0.018	0.0909	0.0488	0.018	0.0273	0.018	
-0.020	-0.0037	-0.0267	-0.020	0.0792	-0.020	
0.015	0.0999	-0.0227	0.015	-0.0617	0.015	
-0.050	-0.0110	0.0592	-0.050	0.1370	-0.050	

» This changes the input data shape



» This is a matrix!

 I.e., by embedding tokens into a vector space, we have changed the shape of our data from 1D to 2D

Fixed Length of Input

- » Our input now consists of a matrix (per instance)
- » Matrix size needs to be predefined
 - Embedding dimension: Parameter we can set freely
 - Length: To be set on training data

Fixed Length of Input

- » Our input now consists of a matrix (per instance)
- » Matrix size needs to be predefined
 - Embedding dimension: Parameter we can set freely
 - Length: To be set on training data
- » Input length
 - This parameter controls how long sentences (or texts) can be
 - It's a hard limit

Fixed Length of Input

- » Our input now consists of a matrix (per instance)
- » Matrix size needs to be predefined
 - Embedding dimension: Parameter we can set freely
 - Length: To be set on training data
- » Input length
 - This parameter controls how long sentences (or texts) can be
 - It's a hard limit
- » Padding
 - Extend shorter inputs so that they have the same length
 - Truncate longer inputs
 - Keras: Function tensorflow.keras.preprocessing.sequence.pad_sequences(...)

Section 3

Implementing Embeddings in Keras

Implementing Embeddings in Keras

- » Two relevant new layers
 - tensorflow.python.keras.layers.Embedding()
 - tensorflow.python.keras.layers.Flatten()
- » Preparations
 - tensorflow.keras.preprocessing.text.Tokenizer()
 - tensorflow.keras.preprocessing.text.text_to_word_sequence()
 - tensorflow.keras.preprocessing.sequence.pad_sequences()

tensorflow.python.keras.layers.Embedding(...)

- » Must be the first layer of the model
- » Turns positive integers (indexes) into dense vectors of fixed size

tensorflow.python.keras.layers.Embedding(...)

- » Must be the first layer of the model
- » Turns positive integers (indexes) into dense vectors of fixed size
- » Parameters
 - input_dim: Size of the vocabulary (i.e., how many words to distinguish)
 - output_dim: How many elements/dimensions do word vectors have?
 - input_length: Length of input vectors (e.g., sentences)

tensorflow.python.keras.layers.Embedding(...)

- » Must be the first layer of the model
- » Turns positive integers (indexes) into dense vectors of fixed size
- » Parameters
 - input_dim: Size of the vocabulary (i.e., how many words to distinguish)
 - output_dim: How many elements/dimensions do word vectors have?
 - input_length: Length of input vectors (e.g., sentences)
- » Pre-trained embeddings
 - Documentation: https://keras.io/examples/nlp/pretrained_word_embeddings/
 - Parameters
 - embeddings_initializer=keras.initializers.Constant(embedding_matrix)
 - trainable=False
 - embedding_matrix is a numpy matrix that contains the vectors loaded from a file

Flatten

- » Network structure so far: Only 1-dimensional vectors
- » Result of embedding layer: matrices (2D)
- » Flatten layer: Combine all rows of a matrix to a long vector
- >> layers.Flatten()
 - Usually used after an embedding layer

Preparations

- 1. Tokenizer
 - Establish vocabulary
 - Assign each type an integer number
- 2. Map token sequences to integer sequences
- 3. Padding
 - Ensure that all sequences have the same length by truncating or adding

Full Example

```
tokenizer = Tokenizer()
1
2 tokenizer.fit_on_texts(train_texts)
3 vocab size = len(tokenizer.word index) + 1
  train_texts = tokenizer.texts_to_sequences(train_texts)
5
  MAX LENGTH = max(len(train ex) for train ex in train texts)
7
8
  train texts = pad sequences(train texts, maxlen=MAX LENGTH, padding="post")
9
10 model = models.Sequential()
  model.add(layers.Input(shape=(MAX_LENGTH)))
11
12 model.add(layers.Embedding(vocab_size, 200, input_length=MAX_LENGTH))
13 model.add(layers.Flatten())
14 model.add(lavers.Dense(10, activation="sigmoid"))
15 model.add(layers.Dropout(0.5))
16 model.add(layers.Dense(1, activation="sigmoid"))
17
18 model.summary()
```

Section 4

Exercise

Exercise

Exercise 08

https://github.com/IDH-Cologne-Deep-Learning-Uebung/exercise-08