Deep Learning Übung WS 23/24

Judith Nester (nester@uni-koeln.de)

21-12-2022

Recap

» Embeddings

- mapping of words or documents to vectors
- >embedded< in a vector space
- allows calculating similarity between words
- » Implementing Embeddings in Keras
 - Two relevant new layers
 - tensorflow.python.keras.layers.Embedding()
 - tensorflow.python.keras.layers.Flatten()
 - Preperations
 - tensorflow.keras.preprocessing.text.Tokenizer()
 - tensorflow.keras.preprocessing.text.text_to_word_sequence()
 - tensorflow.keras.preprocessing.sequence.pad_sequences()

Recap

» Embeddings

- mapping of words or documents to vectors
- >embedded(in a vector space
- allows calculating similarity between words
- » Implementing Embeddings in Keras
 - Two relevant new layers
 - tensorflow.python.keras.layers.Embedding()
 - tensorflow.python.keras.layers.Flatten()
 - Preperations
 - tensorflow.keras.preprocessing.text.Tokenizer()
 - tensorflow.keras.preprocessing.text.text_to_word_sequence()
 - tensorflow.keras.preprocessing.sequence.pad_sequences()
- » Exercise 8

Today

What we have learned so far...

Python NLP and Deep Learning Hypothese, Loss, Optimizer Feed-forward Neural Networks Training (Overfitting, Drop Out, Regularization) Input Representation In der Praxis...

Section 1

What we have learned so far...

Subsection 1

Python

Python Functionalities

- » List Comprehension
 - Define lists by specifying a pattern
 - [x*2 for x in 11 if x < 10]
- » Functions
 - Named arguments, default values
 - Return values, None and NoneType
- » Input/Output
 - Stream-oriented
 - Open file, work with stream, close file

Python

Python Functionalities

Exceptions »

- Handle all kinds of runtime errors
- **raise** to throw errors
- **try**: ... **except**: to catch them

» Python Packages

Use pip for installing python packages

Literatur, Webseiten und Dokus

- » https://docs.python.org/3/
- Library reference: https://docs.python.org/3/library/index.html »
- » Tutorial
 - Al Sweigart: https://automatetheboringstuff.com
 - Also available as printed book and YouTube series
- » IO:
 - https://docs.python.org/3/library/functions.html#open
 - https://docs.python.org/3/library/io.html#module-io
- » Error Handling:
 - https://docs.python.org/3/tutorial/errors.html
 - https://docs.python.org/3/library/exceptions.html
- » Central repository for python libraries: https://pypi.org

Subsection 2

NLP and Deep Learning

DL Tasks

- » Types of DL tasks for Natural Language Processing
 - Summerization, Sentiment Analysis, Question Answering, ...
 - Classification
 - Text classification: An entire text is classified (e.g., genre, sentiment, ...)
 - Sequence labeling: Each individual word is classified (e.g., pos-tagging, ...)
 - binary and multi-class possible

Prediction Model and Learning Algorithm

Prediction Model and Learning Algorithm

Subsection 3

Hypothese, Loss, Optimizer

Supervised learning

- » The correct result/label is known
- » System produces its own result/label (\hat{y}) (hypothesis function)
- » We want the produced result (\hat{y}) to be as close as possible to the real result (y)
- » Difference (loss) between y and \hat{y} is determined (loss function)
- » Loss is minimized as much as possible (optimization algorithm)

Hypothese, Loss, Optimizer

Linear regression

- » Predicting a set or quantity
- » Continuous variable -> Infinite number of possible values
 - e.g. age, distance, price, sales figures ...

» y = ax + b

Logistic regression

- » Assigning *classes* to *objects/instances/items*
- » Binary (0 or 1, yes or no, A or B ...) and multi-class classification possible
- » Method for predicting categorical values (dependent variables) using a set of independent variables

$$y = \frac{1}{1+e^{-x}} = \frac{1}{1+e^{-(ax+b)}}$$

Loss Function

Learning algorithm: How to select the parameters a, b such that the hypothesis function describes the data points as best as possible?

- » How big is the gap between a hypothesis and the data?
- » Loss should be as small as possible
- » Total loss can be calculated for given parameters $\boldsymbol{\theta} = (a,b)$
- » Loss function \boldsymbol{J}

Calculates) wrongness(of h, given parameter values θ (and a data set)

 \blacksquare In reality, θ represents more than two parameters

Deep Learning

Gradient Descent

- » Initialise θ with random values (e.g., 0)
- » Repeat:
 - Find the direction to the minimum by taking the derivative
 - Change θ accordingly, using a learning rate η
 - Stop when θ don't change anymore

Subsection 4

Feed-forward Neural Networks

What is a neural network?

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Judith Nester (nester@uni-koeln.de)

Deep Learning

21-12-2022

What is a neural network?

Figure: 1 neuron (with logistic activation) = logistic regression (with 1 feature)

Judith Nester (nester@uni-koeln.de)

Deep Learning

Feed-forward neural network

Figure: A feed-foward neural network with 1 hidden layer

Feed-forward neural networks

- » The above is called a »feedforward neural network«
 - Information is fed only in forward direction
- » Configuration choices
 - Activation function
 - Layer size: Number of neurons in each layer
 - Number of layers
 - Loss function
 - Optimizer
- » Training choices
 - Epochs/batches
 - Training status displays

- » All neurons of one layer have the same activation function
- » Popular choices for activation functions:

logistic $y = \sigma(x) = \frac{1}{1+e^{-x}}$ – >squashes
(everything to a value between 0 and 1

- relu $y = \max(0, x)$ Makes everything negative to 0
- softmax Scales a vector such that values sum to 1 (probability distribution)

Subsection 5

Training (Overfitting, Drop Out, Regularization)

Overfitting

- » >Fitting (: Train a model on data (= »fit « it to the data)
 - Underfitting: The model is not well fitted to the data, i.e., accuracy is low
 - Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?

- » We want to the model to behave well »in the wild «
- » It needs to generalize from training data
- » If it is overfitted, it works very well on training data, and very badly on test data

Figure: Towards Data Science

Overfitting

There is no one solution for overfitting!

Techniques against overfitting

- » Regularization (numerical)
- » Dropout (structurally)

Regularization

» Formally, regularization is a parameter added to the loss

$$J(\vec{w}) = J_{\text{original}}(\vec{w}) + R$$

Regularization

 L^2

}

$$(||\vec{w}||_2)^2 = \sum_{i=0}^n w_i^2$$

- » Regularization rate λ: Factor that expresses how much we want (another hyperparameter)
- » What does it do?
 - If weights \vec{w} are large: Loss is increased more
 - Large weights are only considered if the increased loss is »worth it«, i.e., if it is counterbalanced by a real error reduction
 - Small weights are preferred

L¹

 $L^1(\vec{x}) = \sum_{i=1}^{n} |x_i|$

L^1 or L^2 ?

» Skansi 2018:
In most cases: L² is better
Use L¹ if data is very noisy or sparse

Dropout

- » Structurally combatting overfitting
 - Hinton et al. (2012)
 - A new hyperparameter $\pi = [0; 1]$
 - \blacksquare In each epoch, every weight is set to zero with a probability of π

Dropout

Example

Figure: Dropout $\pi = 0.5$, visualized

Dropout

Dropout

Dropout

Subsection 6

Input Representation

Structured Data - Tables

- » i.e. Titanic data set
- » Objects (passengers) are described with the help of various properties (name, sex, ticket, age, cabin, ...)
- » Number of features gives us the input shape
- » Input that is not an integer is converted to an integer
- » Input is a vector with the size of the feature count

PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket
1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 2117
2	1	1	Cumings, Mrs. John Bradley (Flo	female	38	1	0	PC 17599
3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2
4	1	1	Futrelle, Mrs. Jacques Heath (Lil	female	35	1	0	
5	0	3	Allen, Mr. William Henry	male	35	0	0	
6	0	3	Moran, Mr. James	male		0	0	
7	0	1	McCarthy, Mr. Timothy J	male	54	0	0	
8	0	3	Palsson, Master. Gosta Leonard	male	2	3	1	
9	1	3	Johnson, Mrs. Oscar W (Elisabe	female	27	0	2	
10	1	2	Naccar Mrs Nicholas (Adala Ac	famala	14	1	0	

. . .

Bag of Words

- » Disregards word order and semantic
- » A vocabulary is established
- $\, {\scriptscriptstyle >\!\!\!>}\,$ Words are counted in order of vocabulary in a text
- » Size of vocabulary gives us the input shape
- $\,\,{}^{\,\,}$ Input is a vector with the size of the vocabulary

Abend	Adresse	also	auf	 bei	beugen	Blume	Brief	 und	Urlaub	 Zaun	zeigen
0	0	2	4	3	0	0	1	7	2	0	3

Embeddings

- » An embedding is a mapping of words or documents to vectors
 - Things are >embedded< in a vector space
 - Representing a word as a vector allows calculating similarity between words
- » Word vectors: Weights learned by a simple neural network with a classification target
 - word2vec: Given word w_i , how likely is it that w_j appears in its context?
- » Idea
 - Embeddings are learned using a neural network
 - Classification task: Given a word, predict its context words
 - Use learned weights as embeddings

Embeddings and neural networks

- » Existing (pre-trained) embeddings can be plugged in
- » Specific embeddings can be trained, just like all other weights

Pre-trained embeddings

- » Glove (Stanford University): https://nlp.stanford.edu/projects/glove/
- » FastText (facebook research): https://fasttext.cc (multiple languages)

adventure 0.0292 -0.0269 0.0273 0.0792 -0.0617 0.1370 -0.0628 0.0420 0.0743 0.0979 -0.0136 0.0488 -0.0267 -0.0227 0.0592 0.0410 0.0314 0.0378 -0.0455 0.0616 -0.0380 0.0232 -0.0218 0.0000 -0.0699 -0.1327 -0.0393 0.0467 0.0413 0.0089 -0.0046 0.0372 -0.0590 0.0740 0.0214 0.0625 0.0067 -0.0063 0.0218 -0.0447 -0.0298 0.0186 -0.0207 0.0158 -0.0508 -0.0297 -0.0807 -0.0619 -0.0194 -0.0153 0.0909 -0.0037 0.0999 -0.0110 ... What we have learned so far... Input

Input Representation

Embeddings and neural networks

- » Our input now consists of a matrix (per instance)
- » Matrix size needs to be predefined
 - Embedding dimension: Parameter we can set freely
 - Length: To be set on training data
- » Input length
 - This parameter controls how long sentences (or texts) can be
- » Padding
 - Extend shorter inputs so that they have the same length
 - Truncate longer inputs

Subsection 7

In der Praxis...

Libraries

Tensorflow python machine learning platform (https://www.tensorflow.org/)
Keras deep learning library (part of Tensorflow) (https://keras.io/)
Sci-kit learn python machine learning library for predictive data analysis
 (https://scikit-learn.org/stable/)
NumPy python library for scientific computing (https://numpy.org/)