

Machine Learning 1: Naive Bayes VL Sprachliche Informationsverarbeitung

Nils Reiter nils.reiter@uni-koeln.de

November 16, 2023 Winter term 2023/24

Introduction

- Probabilistic classification algorithm
- Makes independence assumption about features 'naive'
- Reading

Jurafsky/Martin (2023, Ch. 4)

Introduction

- Probabilistic classification algorithm
- Makes independence assumption about features 'naive'

Reading Jurafsky/Martin (2023, Ch. 4)

Nice intro to Bayesian statistics by Matt Parker and Hannah Fry
 Parker/Fry (2019)

Section 1

Probabilities

Basics: Cards

- ▶ 32 cards Ω (sample space)
- ► 4 'colors': $C = \{\clubsuit, \diamondsuit, \diamondsuit, \heartsuit\}$
- ▶ 8 values: $V = \{7, 8, 9, 10, J, Q, K, A\}$
- \blacktriangleright Individual cards ('outcomes') are denoted with value and color: $8\heartsuit$

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- $\blacktriangleright\,$ An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- $\blacktriangleright\,$ An event can be any subset of the sample space $\Omega\,$
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

• "We draw a heart eight" –
$$E = \{8\heartsuit\}$$

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond"

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- "We draw a queen"

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$

Events

- Generally, we draw cards from a (well shuffled) deck
- ▶ We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ "We draw a queen" $E = \{Q\clubsuit, Q\diamondsuit, Q\heartsuit\}$
- "We draw a heart eight or diamond ten"

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ "We draw a queen" $E = \{Q\clubsuit, Q\diamondsuit, Q\heartsuit\}$
- "We draw a heart eight or diamond ten" $E = \{8\heartsuit, 10\diamondsuit\}$
- "We draw any card"

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- \blacktriangleright An event can be any subset of the sample space Ω
 - ▶ There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- \blacktriangleright Events will be denoted with E

- "We draw a heart eight" $E = \{8\heartsuit\}$
- "We draw card with a diamond" $E = \{7\diamondsuit, 8\diamondsuit, 9\diamondsuit, 10\diamondsuit, J\diamondsuit, Q\diamondsuit, K\diamondsuit, A\diamondsuit\}$
- ▶ "We draw a queen" $E = \{Q\clubsuit, Q\diamondsuit, Q\heartsuit\}$
- "We draw a heart eight or diamond ten" $E = \{8\heartsuit, 10\diamondsuit\}$
- "We draw any card" $E = \Omega$

Probabilities

▶ Probability p(E): Likelihood, that a certain event ($E \subset \Omega$) happens

- $\blacktriangleright \ 0 \le p \le 1$
- ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
- ▶ p(E) = 0.000001: Very unlikely event

Basics

Probabilities

▶ Probability p(E): Likelihood, that a certain event ($E \subset \Omega$) happens

- $\blacktriangleright \ 0 \le p \le 1$
- ▶ p(E) = 0: Impossible event p(E) = 1: Certain event
- ▶ p(E) = 0.000001: Very unlikely event

- If all outcomes are equally likely: $p(E) = \frac{|E|}{|\Omega|}$
- ► $p(\{8\heartsuit\}) = \frac{1}{32}$
- ▶ $p({9\clubsuit,9\diamondsuit,9\diamondsuit,9\heartsuit}) = \frac{4}{32}$
- $p(\Omega) = 1$ (must happen, certain event)

Probability and Relative Frequency

- Probability p: Theoretical concept, idealisation
 - Expectation
- ► Relative Frequency *f*: Concrete measure
 - Normalised number of *observed* events
 - E.g., after 10 times drawing a card (with returning and shuffling), we counted the event \blacklozenge eight times: $f({x \diamondsuit }) = \frac{8}{10}$
- ▶ For large numbers of drawings, relative frequency approximates the probability

$$\blacktriangleright \lim_{\infty} f = p$$

Probability and Relative Frequency

- Probability p: Theoretical concept, idealisation
 - Expectation
- ► Relative Frequency *f*: Concrete measure
 - Normalised number of *observed* events
 - E.g., after 10 times drawing a card (with returning and shuffling), we counted the event \blacklozenge eight times: $f({x \diamondsuit }) = \frac{8}{10}$
- ► For large numbers of drawings, relative frequency approximates the probability

$$\lim_{\infty} f = p$$

- In practice, we will often use relative frequencies as probabilities
- This establishes assumptions:
 - Data set is representative of the real world
 - ▶ We make a lot of observations (the more, the better we approximate real probabilities)

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit

•
$$p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$$

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- E: We draw \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is $X\heartsuit$
 - E_2 : Second card is $X\heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- \blacktriangleright E: We draw 8 \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{32} * \frac{1}{32} = 0.0156$
- E: We draw \heartsuit two times in a row (putting the first card back)
 - E_1 : First card is $X\heartsuit$
 - E_2 : Second card is $X \heartsuit$
 - $p(E) = p(E_1, E_2) = p(E_1) * p(E_2) = \frac{1}{4} * \frac{1}{4} = 0.0625$
- These events are independent
 - because we return and re-shuffle the cards all the time
 - Drawing $8\heartsuit$ the first time has no influence on the second drawing

Basics I

Conditional Probability (Dependent Events)

- ► We no longer return the card
- \blacktriangleright E: We draw 8 \heartsuit two times in a row
 - E_1 : First card is 8 \heartsuit
 - E_2 : Second card is 8 \heartsuit (without putting the first card back)
 - $p(E_1, E_2) = p(E_1) * p(E_2)$
 - This no longer works, because the events are not independent
 - ▶ There is only one $8\heartsuit$ in the game, and $p(E_2)$ has to take into account that it might be gone already
 - This is expressed with the notion of conditional probability
 - $p(E_1, E_2) = p(E_1) * p(E_2|E_1)$
 - $p(E_2|E_1) = 0$, therefore $p(E_1, E_2) = 0$

Basics II Conditional Probability (Dependent Events)

- E: We draw \heartsuit first (E_1) , followed by:
 - \blacktriangleright E_2 : Second card is $X\diamondsuit$
 - E_3 : Second card is $X\heartsuit$

$$p(E_1, E_2) = p(E_1) * p(E_2|E_1) = \frac{8}{32} * \frac{8}{31} = 0.064$$

$$p(E_1, E_3) = p(E_1) * p(E_3|E_1) = \frac{8}{32} * \frac{7}{31} = 0.056$$

Example

Relation between hair color H and preferred wake-up time W

(all numbers are made up.)

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

Conditional and Joint Probabilities

Example

Relation between hair color ${\cal H}$ and preferred wake-up time ${\cal W}$

(all numbers are made up.)

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early late	20 30	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

If we pick a random person, what's the probability that this person has brown hair?

$$p(H = brown) = ?$$

Reiter

Example

Relation between hair color ${\cal H}$ and preferred wake-up time ${\it W}$

(all numbers are made up.)

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early late	20 <mark>30</mark>	10 5	30 35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

$$\begin{array}{ll} p(H=\operatorname{brown})=\frac{50}{65} & p(H=\operatorname{red})=\frac{15}{65} \\ p(W=\operatorname{early})=\frac{30}{65} & p(W=\operatorname{late})=\frac{35}{65} \end{array} \right\} \text{ sums per row or column}$$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow ~W ~/~ H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

(all numbers are made up.)

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

▶ Joint probability:
$$p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$$

Probability that someone has brown hair and prefers to wake up late

Denominator: Number of all items

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

 $\downarrow ~W ~/~ H \rightarrow$ brown red sum early 20 10 30 30 5 35 late 50 15 65 sum

Table: Experimental Results, Ω : Group of questioned people, $|\Omega| = 65$

▶ Joint probability: $p(W = \text{late}, H = \text{brown}) = \frac{30}{65}$

Probability that someone has brown hair and prefers to wake up late

- Denominator: Number of all items
- Conditional probability: $p(W = \text{late}|H = \text{brown}) = \frac{30}{50}$
 - Probability that one of the brown-haired participants prefers to wake up late
 - Denominator: Number of remaining items (after conditioned event has happened)

VL Sprachliche Informationsverarbeitung

(all numbers are made up.)

Conditional and Joint Probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

Conditional and Joint Probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$p(A|B) = \frac{p(A,B)}{p(B)}$$
 definition of conditional probabilities

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$p(A|B) = \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities}$$

$$p(W = \text{late}|H = \text{brown}) = \frac{30}{50} = 0.6 \quad \text{intuition from previous slide}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W = e) = 0.46 p(W = l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $\left|\Omega\right|$

$$\begin{split} p(A|B) &= \frac{p(A,B)}{p(B)} & \text{definition of conditional probabilities} \\ p(W = \mathsf{late}|H = \mathsf{brown}) &= \frac{30}{50} = 0.6 & \text{intuition from previous slide} \\ &= \frac{p(W = \mathsf{late}, H = \mathsf{brown})}{p(H = \mathsf{brown})} & \text{by applying definition} \end{split}$$

Example

	brown	red	margin
early late	p(W = e, H = b) = 0.31 p(W = l, H = b) = 0.46	p(W = e, H = r) = 0.15 p(W = l, H = r) = 0.08	p(W=e) = 0.46 p(W=l) = 0.54
margin	p(H=b) = 0.77	p(H=r) = 0.23	$p(\Omega) = 1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$p(A|B) = \frac{p(A,B)}{p(B)} \quad \text{definition of conditional probabilities}$$

$$p(W = |\text{ate}|H = \text{brown}) = \frac{30}{50} = 0.6 \quad \text{intuition from previous slide}$$

$$= \frac{p(W = |\text{ate}, H = \text{brown})}{p(H = \text{brown})} \quad \text{by applying definition}$$

$$= \frac{0.46}{\text{VL Spectfliche Informationsverarbeitung}} \quad \text{Winter term 2023/2}$$

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- Conditional probabilities can be conditioned on more than two events

$$p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$$

Multiple Conditions

- ▶ Joint probabilities can include more than two events $p(E_1, E_2, E_3, ...)$
- Conditional probabilities can be conditioned on more than two events $p(A|B, C, D) = \frac{p(A, B, C, D)}{p(B, C, D)}$

$$p(A, B, C, D) = p(A|B, C, D)p(B, C, D) = p(A|B, C, D)p(B|C, D)p(C, D) = p(A|B, C, D)p(B|C, D)p(C|D)p(D)$$

Bayes Law

$$p(B|A) = \frac{p(A,B)}{p(A)} = \frac{p(A|B)p(B)}{p(A)}$$

Allows reordering of conditional probabilities

Follows directly from above definitions

Section 2

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
 - \blacktriangleright A set of features f_i
 - A data set $x \in X$ (x is an individual instance, X the entire set)
 - ▶ The feature *value* is given as $f_i(x)$

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
 - A set of features f_i
 - A data set $x \in X$ (x is an individual instance, X the entire set)
 - The feature value is given as $f_i(x)$

- Feature representing "word length" f_6
- One data point is "dog"
- ► $f_6(``dog") = 6$

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
 - \blacktriangleright A set of features f_i
 - A data set $x \in X$ (x is an individual instance, X the entire set)
 - The feature value is given as $f_i(x)$

Example

- Feature representing "word length" f_6
- One data point is "dog"
- ► $f_6(``dog") = 6$

```
You can also think of f_6
as a function in a program:
1 def f6(x):
2 return len(x)
```

Naive Bayes Prediction Model

Intuition

We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Naive Bayes Prediction Model

Intuition

We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $f_n(x)$: Value of feature *n* for instance *x*
- $\arg \max_i e$: Select the argument *i* that maximizes the expression *e*

- $f_n(x)$: Value of feature *n* for instance x
- $\arg \max_i e$: Select the argument i that maximizes the expression e

- $f_n(x)$: Value of feature *n*-for instance x
- $\arg \max_i e$: Select the argument i that maximizes the expression e

$$prediction(x) = \underset{c \in C}{\arg \max} p(c|f_1(x), f_2(x), \dots, f_n(x))$$

- $f_n(x)$: Value of feature *n* for instance x
- $\arg \max_i e$: Select the argument i that maximizes the expression e

$$prediction(x) = \underset{c \in C}{\arg \max} p(c|f_1(x), f_2(x), \dots, f_n(x))$$

How do we calculate $p(c|f_1(x), f_2(x), \ldots, f_n(x))$?

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) =$$

Naive Bayes Prediction Model

$$p(c|f_1, \dots, f_n) = \frac{p(c, f_1, f_2, \dots, f_n)}{p(f_1, f_2, \dots, f_n)}$$

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it $\propto p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)$

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it $\propto p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)$

Now we - naively - assume feature independence

$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it $\propto p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)$

Now we - naively - assume feature independence

$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$

$$prediction(x) = \arg \max_{c \in C} p(f_1(x)|c) \times p(f_2(x)|c) \times \cdots \times p(c)$$

Naive Bayes Prediction Model

$$p(c|f_1,\ldots,f_n) = \frac{p(c,f_1,f_2,\ldots,f_n)}{p(f_1,f_2,\ldots,f_n)} = \frac{p(f_1,f_2,\ldots,f_n,c)}{p(f_1,f_2,\ldots,f_n)}$$

denominator is constant, so we skip it $\propto p(f_1|f_2, \dots, f_n, c) \times p(f_2|f_3, \dots, f_n, c) \times \dots \times p(c)$

Now we - naively - assume feature independence

$$= p(f_1|c) \times p(f_2|t) \times \cdots \times p(c)$$

$$prediction(x) = \arg \max_{c \in C} p(f_1(x)|c) \times p(f_2(x)|c) \times \dots \times p(c)$$

$$Where do we get p(f_i(x)|c)? - Training!$$

Naive Bayes Learning Algorithm

- **1**. For each feature f_i
 - Count frequency tables from the training set:

			C (classes)					
		c_1 c_2 c_m						
	a	3	2					
o(f)	b	5	7					
$v(j_i)$	c	0	1					
	\sum	8	10					

- 2. Calculate conditional probabilities
 - Divide each number by the sum of the entire column

• E.g.,
$$p(a|c_1) = \frac{3}{3+5+0}$$
 $p(b|c_2) = \frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

> Data set: 100 e-mails, manually classified as spam or not spam (50/50)

 $\blacktriangleright Classes C = \{true, false\}$

Features: Presence of each of these tokens (manually selected): 'casino', 'enlargement', 'meeting', 'profit', 'super', 'text', 'xxx'

			С				С	
		true	false			true	false	
_	1	45	25		1	15	35	••••
sino	0	5	25	ext	0	35	15	
ca	\sum	50	50	ţ	\sum	50	50	

Table: Extracted frequencies for features 'casino' and 'text'

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

	(casino	0	$ \rangle$
		enlargement	0	
		meeting	1	
p	true	profit	0	
		super	0	
		text	1	
		xxx	1)

- 1. Extract word presence information from new text
- 2. Calculate the probability for *each possible class*

	/	casino	0] \		p(asino = 0 true)	\times
		enlargement	0		p(enlargement = 0 true)	\times
		meeting	1		p(meeting = 1 true)	\times
p	true	profit	0	\propto	p(profit = 0 true)	\times
		super	0		p(super = 0 true)	\times
		text	1		p(text = 1 true)	\times
	\setminus	xxx	1]/		p(xxx = 1 true)	

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

p	true	casino enlargement meeting profit super text xxx	$ \begin{array}{c} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \end{array} $	\propto	p(casino = 0 true) $p(enlargement = 0 true)$ $p(meeting = 1 true)$ $p(profit = 0 true)$ $p(super = 0 true)$ $p(text = 1 true)$ $p(xxx = 1 true)$	× × × × × ×
		_		=	$\cdots \times \frac{5}{50} \times \cdots \times \frac{15}{50} \times \cdots =$	=

- 1. Extract word presence information from new text
- 2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Subsection 1

Problems with Zeros

Danger

		C		
		true	false	
	1	0	35	
ove	0	50	15	
2	\sum	50	50	

What happens in this situation to the prediction?

Danger

		С		
		true	false	
	1	0	35	
оле	0	50	15	
9	\sum	50	50	

- What happens in this situation to the prediction?
- At some point, we need to multiply with p(love = 1 | true) = 0
- ▶ This leads to a total probability of zero (for this class), irrespective of the other features
 - Even if another feature would be a perfect predictor!
- \rightarrow Smoothing (as before)!

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
 - $\blacktriangleright \frac{x_i+1}{N+1}$
 - This leads to values slightly above zero

Summary

- Probability theory
 - Probability: Fraction of positive over all possible events
 - Conditional probability: Restrict the space of possible events
- Naive Bayes
 - Probability-based classification algorithm
 - Assumes feature independence (therefore: "naive")
 - Still used in many applications
 - E.g., spam classification

References I

Jurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.
 Parker, Matt/Hannah Fry (2019). Bayesian Statistics with Hannah Fry. URL: https://www.youtube.com/watch?v=7GgLSnQ48os.