Machine Learning 1: Naive Bayes

VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

November 16, 2023
Winter term 2023/24

Introduction

- Probabilistic classification algorithm
- Makes independence assumption about features - 'naive'
- Reading

Introduction

- Probabilistic classification algorithm
- Makes independence assumption about features - 'naive'
- Reading
- Nice intro to Bayesian statistics by Matt Parker and Hannah Fry

Section 1

Probabilities

Basics: Cards

- 32 cards Ω (sample space)
- 4 'colors': $C=\{\boldsymbol{\phi}, \boldsymbol{\oplus}, \diamond, \diamond\}$

- 8 values: $V=\{7,8,9,10, J, Q, K, A\}$
- Individual cards ('outcomes') are denoted with value and color: 80

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" $-E=\{80\}$

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" $-E=\{80\}$
- "We draw card with a diamond"

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" $-E=\{80\}$
- "We draw card with a diamond" $-E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" - $E=\{80\}$
- "We draw card with a diamond" - $E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- "We draw a queen"

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" - $E=\{80\}$
- "We draw card with a diamond" - $E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- "We draw a queen" - $E=\{Q \boldsymbol{\natural}, Q \boldsymbol{\downarrow}, Q \diamond, Q \bigcirc\}$

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" $-E=\{80\}$
- "We draw card with a diamond" - $E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- "We draw a queen" - $E=\{Q \mathbf{\&}, Q \mathbf{\wedge}, Q \diamond, Q \circlearrowleft\}$
- "We draw a heart eight or diamond ten"

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" - $E=\{80\}$
- "We draw card with a diamond" - $E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- "We draw a queen" - $E=\{Q \boldsymbol{\&}, Q \wedge, Q \diamond, Q \circlearrowright\}$
- "We draw a heart eight or diamond ten" $-E=\{8 \bigcirc, 10 \diamond\}$
- "We draw any card"

Basics

Events

- Generally, we draw cards from a (well shuffled) deck
- We define what events we are interested in
- An event can be any subset of the sample space Ω
- There are $2^{|\Omega|}$ different subsets, i.e., $2^{|\Omega|}$ possible events
- Events will be denoted with E

Examples

- "We draw a heart eight" - $E=\{80\}$
- "We draw card with a diamond" - $E=\{7 \diamond, 8 \diamond, 9 \diamond, 10 \diamond, J \diamond, Q \diamond, K \diamond, A \diamond\}$
- "We draw a queen" - $E=\{Q \boldsymbol{\&}, Q \wedge, Q \diamond, Q \circlearrowright\}$
- "We draw a heart eight or diamond ten" $-E=\{80,10 \diamond\}$
- "We draw any card" - $E=\Omega$

Basics

Probabilities

- Probability $p(E)$: Likelihood, that a certain event $(E \subset \Omega)$ happens
- $0 \leq p \leq 1$
- $p(E)=0$: Impossible event $\quad p(E)=1$: Certain event
- $p(E)=0.000001$: Very unlikely event

Basics

Probabilities

- Probability $p(E)$: Likelihood, that a certain event $(E \subset \Omega)$ happens
- $0 \leq p \leq 1$
- $p(E)=0$: Impossible event $\quad p(E)=1$: Certain event
- $p(E)=0.000001$: Very unlikely event

Example

- If all outcomes are equally likely: $p(E)=\frac{|E|}{|\Omega|}$
- $p(\{80\})=\frac{1}{32}$
- $p(\{9 \boldsymbol{\$}, 9 \boldsymbol{\wedge}, 9 \diamond, 9 \diamond\})=\frac{4}{32}$
- $p(\Omega)=1$ (must happen, certain event)

Basics

Probability and Relative Frequency

- Probability p : Theoretical concept, idealisation
- Expectation
- Relative Frequency f : Concrete measure
- Normalised number of observed events
- E.g., after 10 times drawing a card (with returning and shuffling), we counted the event eight times: $f(\{x\})=\frac{8}{10}$
- For large numbers of drawings, relative frequency approximates the probability
- $\lim _{\infty} f=p$

Basics

Probability and Relative Frequency

- Probability p : Theoretical concept, idealisation
- Expectation
- Relative Frequency f : Concrete measure
- Normalised number of observed events
- E.g., after 10 times drawing a card (with returning and shuffling), we counted the event eight times: $f(\{x\})=\frac{8}{10}$
- For large numbers of drawings, relative frequency approximates the probability
- $\lim _{\infty} f=p$
- In practice, we will often use relative frequencies as probabilities
- This establishes assumptions:
- Data set is representative of the real world
- We make a lot of observations (the more, the better we approximate real probabilities)

Basics

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- E: We draw $8 \bigcirc$ two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$

Basics

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- E: We draw $8 \bigcirc$ two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$
- E : We draw \bigcirc two times in a row (putting the first card back)
- E_{1} : First card is $X \mathrm{O}$
- E_{2} : Second card is $X \odot$
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{4} * \frac{1}{4}=0.0625$

Basics

Joint Probability (Independent Events)

- We are often interested in multiple events (and their relation)
- E : We draw $8 \bigcirc$ two times in a row (putting the first card back)
- E_{1} : First card is 80
- E_{2} : Second card is 80
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{32} * \frac{1}{32}=0.0156$
- E : We draw \bigcirc two times in a row (putting the first card back)
- E_{1} : First card is $X \bigcirc$
- E_{2} : Second card is $X \mathrm{O}$
- $p(E)=p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2}\right)=\frac{1}{4} * \frac{1}{4}=0.0625$
- These events are independent
- because we return and re-shuffle the cards all the time
- Drawing 80 the first time has no influence on the second drawing

Basics I

Conditional Probability (Dependent Events)

- We no longer return the card
- E: We draw 80 two times in a row
- E_{1} : First card is 80
- E_{2} : Second card is 80 (without putting the first card back)
- $p\left(E_{1}, E_{2}\right) \equiv p\left(E_{1}\right) * p\left(E_{2}\right)$
- This no longer works, because the events are not independent
- There is only one 80 in the game, and $p\left(E_{2}\right)$ has to take into account that it might be gone already
- This is expressed with the notion of conditional probability
- $p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2} \mid E_{1}\right)$
- $p\left(E_{2} \mid E_{1}\right)=0$, therefore $p\left(E_{1}, E_{2}\right)=0$

Basics II

Conditional Probability (Dependent Events)

- E : We draw \bigcirc first $\left(E_{1}\right)$, followed by:
- E_{2} : Second card is $X \diamond$
- E_{3} : Second card is $X \bigcirc$
- $p\left(E_{1}, E_{2}\right)=p\left(E_{1}\right) * p\left(E_{2} \mid E_{1}\right)=\frac{8}{32} * \frac{8}{31}=0.064$
- $p\left(E_{1}, E_{3}\right)=p\left(E_{1}\right) * p\left(E_{3} \mid E_{1}\right)=\frac{8}{32} * \frac{7}{31}=0.056$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W
(all numbers are made up.)

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- If we pick a random person, what's the probability that this person has brown hair?

$$
p(H=\text { brown })=?
$$

Conditional and Joint Probabilities

Example
Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

$$
\left.\begin{array}{l}
p(H=\text { brown })=\frac{50}{65} \\
p(W=\text { early })=\frac{30}{65}
\end{array} \quad p(W=\text { late })=\frac{15}{65}=\frac{35}{65}\right\} \text { sums per row or column }
$$

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items

Conditional and Joint Probabilities

Example

Relation between hair color H and preferred wake-up time W

$\downarrow W / H \rightarrow$	brown	red	sum
early	20	10	30
late	30	5	35
sum	50	15	65

Table: Experimental Results, Ω : Group of questioned people, $|\Omega|=65$

- Joint probability: $p(W=$ late, $H=$ brown $)=\frac{30}{65}$
- Probability that someone has brown hair and prefers to wake up late
- Denominator: Number of all items
- Conditional probability: $p(W=$ late $\mid H=$ brown $)=\frac{30}{50}$
- Probability that one of the brown-haired participants prefers to wake up late
- Denominator: Number of remaining items (after conditioned event has happened)

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
p(A \mid B)=\frac{p(A, B)}{p(B)} \quad \text { definition of conditional probabilities }
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \quad \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \quad \text { intuition from previous slide }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
\begin{aligned}
p(A \mid B) & =\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
p(W=\text { late } \mid H=\text { brown }) & =\frac{30}{50}=0.6 \text { intuition from previous slide } \\
& =\frac{p(W=\text { late }, H=\text { brown })}{p(H=\text { brown })} \text { by applying definition }
\end{aligned}
$$

Conditional and Joint Probabilities

Example

	brown	red	margin
early	$p(W=e, H=b)=0.31$	$p(W=e, H=r)=0.15$	$p(W=e)=0.46$
late	$p(W=l, H=b)=0.46$	$p(W=l, H=r)=0.08$	$p(W=l)=0.54$
margin	$p(H=b)=0.77$	$p(H=r)=0.23$	$p(\Omega)=1$

Table: (Joint) Probabilities, derived by dividing everything by $|\Omega|$

$$
\begin{aligned}
& p(A \mid B)=\frac{p(A, B)}{p(B)} \text { definition of conditional probabilities } \\
& p(W=\text { late } H=\text { brown })=\frac{30}{50}=0.6 \text { intuition from previous slide } \\
& =\frac{p(W=\text { late }, H=\text { brown })}{p(H=\text { brown })} \text { by applying definition } \\
& =\frac{0.46}{\text { VL Spractlizhe Informatio }}=0.6
\end{aligned}
$$

Multiple Conditions

- Joint probabilities can include more than two events $p\left(E_{1}, E_{2}, E_{3}, \ldots\right)$
- Conditional probabilities can be conditioned on more than two events

$$
p(A \mid B, C, D)=\frac{p(A, B, C, D)}{p(B, C, D)}
$$

Multiple Conditions

- Joint probabilities can include more than two events $p\left(E_{1}, E_{2}, E_{3}, \ldots\right)$
- Conditional probabilities can be conditioned on more than two events

$$
p(A \mid B, C, D)=\frac{p(A, B, C, D)}{p(B, C, D)}
$$

- Chain rule

$$
\begin{aligned}
p(A, B, C, D) & =p(A \mid B, C, D) p(B, C, D) \\
& =p(A \mid B, C, D) p(B \mid C, D) p(C, D) \\
& =p(A \mid B, C, D) p(B \mid C, D) p(C \mid D) p(D)
\end{aligned}
$$

Bayes Law

$$
p(B \mid A)=\frac{p(A, B)}{p(A)}=\frac{p(A \mid B) p(B)}{p(A)}
$$

Allows reordering of conditional probabilities

- Follows directly from above definitions

Section 2

Naive Bayes

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
- A set of features f_{i}
- A data set $x \in X$ (x is an individual instance, X the entire set)
- The feature value is given as $f_{i}(x)$

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
- A set of features f_{i}
- A data set $x \in X$ (x is an individual instance, X the entire set)
- The feature value is given as $f_{i}(x)$

Example

- Feature representing "word length" f_{6}
- One data point is "dog"
- $f_{6}(" d o g ")=6$

Naive Bayes

Prediction Model

- Probabilistic model (i.e., takes probabilities into account)
- Probabilities are estimated on training data (relative frequencies)
- Setup
- A set of features f_{i}
- A data set $x \in X$ (x is an individual instance, X the entire set)
- The feature value is given as $f_{i}(x)$

Example

- Feature representing "word length" f_{6}
- One data point is "dog"
- $f_{6}(" d o g ")=6$

$$
\begin{aligned}
& \text { You can also think of } f_{6} \\
& \text { as a function in a program: } \\
& 1 \text { def } f 6(x) \text { : } \\
& 2 \text { return } \operatorname{len}(x)
\end{aligned}
$$

Naive Bayes

Prediction Model

Intuition

We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

Naive Bayes

Prediction Model

Intuition

We calculate the probability for each possible class c, given the feature values of the item x, and we assign most probably class

- $f_{n}(x)$: Value of feature n for instance x
$-\arg \max _{i} e$: Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Intuition

We calculate the probability for each possible tass c, given the and we assign most probably class

```
def argmax(SET, EXPRESSION):
```

def argmax(SET, EXPRESSION):
arg = 0
arg = 0
maxvalue = 0
maxvalue = 0
foreach i in SET:
foreach i in SET:
value = EXPRESSION(i)
value = EXPRESSION(i)
if value > maxvalue:
if value > maxvalue:
arg = i
arg = i
maxvalue = value
maxvalue = value
return arg

```
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
- $\arg \max _{i} e$: Select the argument i that maximizes the expression e

Naive Bayes

Prediction Model

Intuition

We calculate the probability for each possible Class c, given the and we assign most probably class

```
def argmax(SET, EXPRESSION):
```

def argmax(SET, EXPRESSION):
arg=0
arg=0
maxvalue = 0
maxvalue = 0
foreach i in SET:
foreach i in SET:
value = EXPRESSION(i)
value = EXPRESSION(i)
if value > maxvalue:
if value > maxvalue:
arg=i
arg=i
maxvalue = value
maxvalue = value
return arg

```
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
- $\arg \max _{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\arg \max } p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

Naive Bayes

Prediction Model

Intuition

We calculate the probability for each possible Class c, given the and we assign most probably class

```
def argmax(SET, EXPRESSION):
```

def argmax(SET, EXPRESSION):
arg=0
arg=0
maxvalue = 0
maxvalue = 0
foreach i in SET:
foreach i in SET:
value = EXPRESSION(i)
value = EXPRESSION(i)
if value > maxvalue:
if value > maxvalue:
arg=i
arg=i
maxvalue = value
maxvalue = value
return arg

```
    return arg
```

- $f_{n}(x)$: Value of feature n for instance x
- $\arg \max _{i} e$: Select the argument i that maximizes the expression e

$$
\operatorname{prediction}(x)=\underset{c \in C}{\arg \max } p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)
$$

How do we calculate $p\left(c \mid f_{1}(x), f_{2}(x), \ldots, f_{n}(x)\right)$?

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=
$$

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

Naive Bayes

Prediction Model

$$
p\left(c \mid f_{1}, \ldots, f_{n}\right)=\frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}
$$

denominator is constant, so we skip it $\propto p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c)$

Naive Bayes

Prediction Model

$$
\begin{aligned}
p\left(c \mid f_{1}, \ldots, f_{n}\right)= & \frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)} \\
& \quad \text { denominator is constant, so we skip it } \\
\propto & p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c) \\
& \text { Now we }- \text { naively }- \text { assume feature independence } \\
= & p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)
\end{aligned}
$$

Naive Bayes

Prediction Model

$$
\begin{aligned}
p\left(c \mid f_{1}, \ldots, f_{n}\right)= & \frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)} \\
& \text { denominator is constant, so we skip it } \\
\propto & p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c) \\
& \text { Now we }- \text { naively }- \text { assume feature independence } \\
= & p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c) \\
\operatorname{prediction}(x)= & \underset{c \in C}{\arg \max } p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)
\end{aligned}
$$

Naive Bayes

Prediction Model

$$
\begin{aligned}
p\left(c \mid f_{1}, \ldots, f_{n}\right)= & \frac{p\left(c, f_{1}, f_{2}, \ldots, f_{n}\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)}=\frac{p\left(f_{1}, f_{2}, \ldots, f_{n}, c\right)}{p\left(f_{1}, f_{2}, \ldots, f_{n}\right)} \\
& \quad \text { denominator is constant, so we skip it } \\
\propto & p\left(f_{1} \mid f_{2}, \ldots, f_{n}, c\right) \times p\left(f_{2} \mid f_{3}, \ldots, f_{n}, c\right) \times \cdots \times p(c) \\
& \text { Now we }- \text { naively }- \text { assume feature independence } \\
= & p\left(f_{1} \mid c\right) \times p\left(f_{2} \mid t\right) \times \cdots \times p(c)
\end{aligned}
$$

$$
\operatorname{prediction}(x)=\arg \max p\left(f_{1}(x) \mid c\right) \times p\left(f_{2}(x) \mid c\right) \times \cdots \times p(c)
$$

$$
c \in C
$$

$$
\text { Where do we get } p\left(f_{i}(x) \mid c\right) \text { ? - Training! }
$$

Naive Bayes

Learning Algorithm

1. For each feature f_{i}

- Count frequency tables from the training set: C (classes)

		c_{1}	c_{2}	\ldots	c_{m}
$v\left(f_{i}\right)$	a	3	2	\ldots	
	b	5	7	\ldots	
	c	0	1	\ldots	
		8	10		

2. Calculate conditional probabilities

- Divide each number by the sum of the entire column
- E.g., $p\left(a \mid c_{1}\right)=\frac{3}{3+5+0} \quad p\left(b \mid c_{2}\right)=\frac{7}{2+7+1}$

Section 3

Example: Spam Classification

Training

- Data set: 100 e-mails, manually classified as spam or not spam (50/50)
- Classes $C=\{$ true, false $\}$
- Features: Presence of each of these tokens (manually selected): 'casino', 'enlargement', 'meeting', 'profit', 'super', 'text', 'xxx'

Table: Extracted frequencies for features 'casino' and 'text'

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class
$p\left(\right.$ true $\left.\left.\left\lvert\, \begin{array}{ll}\text { casino } & 0 \\ \text { enlargement } & 0 \\ \text { meeting } & 1 \\ \text { profit } & 0 \\ \text { super } & 0 \\ \text { text } \\ \text { xxx } & 1 \\ \text { ma }\end{array}\right.\right]\right)$

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class
$p\left(\right.$ true \(\left.\left.\left\lvert\, \begin{array}{ll}casino \& 0

enlargement \& 0

meeting \& 1

profit \& 0

super \& 0

text \& 1

xxx \& 1\end{array}\right.\right]\right) \propto\)| $p($ casino $=0 \mid$ true $)$ | \times |
| :--- | :--- |
| $p($ enlargement $=0 \mid$ true $)$ | \times |
| $p($ meeting $=1 \mid$ true $)$ | \times |
| $p($ profit $=0 \mid$ true $)$ | \times |
| $p($ super $=0 \mid$ true $)$ | \times |
| $p($ text $=1 \mid$ true $)$ | |
| $p(x x x=1 \mid$ true $)$ | |

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

Prediction

1. Extract word presence information from new text
2. Calculate the probability for each possible class

3. Assign the class with the higher probability

Subsection 1

Problems with Zeros

Danger

		C	
		true	false
	1	0	35
	0	50	15
			50

- What happens in this situation to the prediction?

Danger

		C	
		true	false
	1	0	35
		0	50
			15
		50	50

- What happens in this situation to the prediction?
- At some point, we need to multiply with $p($ love $=1 \mid$ true $)=0$
- This leads to a total probability of zero (for this class), irrespective of the other features
- Even if another feature would be a perfect predictor!
\rightarrow Smoothing (as before)!

Smoothing

- Whenever multiplication is involved, zeros are dangerous
- Smoothing is used to avoid zeros
- Different possibilities
- Simple: Add something to the probabilities
- $\frac{x_{i}+1}{N+1}$
- This leads to values slightly above zero

Summary

- Probability theory
- Probability: Fraction of positive over all possible events
- Conditional probability: Restrict the space of possible events
- Naive Bayes
- Probability-based classification algorithm
- Assumes feature independence (therefore: "naive")
- Still used in many applications
- E.g., spam classification

References I

Rurafsky, Dan/James H. Martin (2023). Speech and Language Processing. 3rd ed. Draft of Janaury 7, 2023. Prentice Hall. URL: https://web.stanford.edu/~jurafsky/slp3/.目 Parker, Matt/Hannah Fry (2019). Bayesian Statistics with Hannah Fry. URL: https://www. youtube. com/watch?v=7GgLSnQ48os.

