Recap: Machine Learning

Naive Bayes

- Probabilistic method for classification
- Naive because we ignore feature dependencies
- Prediction model:

$$
\underset{c \in C}{\arg \max } p\left(c \mid f_{1}, f_{2}, \ldots, f_{n}\right)
$$

- Training: Count relative frequencies

Logistic Regression

- Regression method for binary classification
- Output numbers as probabilities
- Prediction model:

$$
\frac{1}{1+e^{-(a x+b)}}
$$

- Training: Gradient descent with loss function

Neural Network

- Layered architecture
- Classification type depends on last layer
- Output numbers as probabilities
- Prediction model:

$$
L_{n}\left(L_{n-1}\left(L_{\ldots . .}\left(L_{1}(X)\right)\right)\right)
$$

- Training:

Backpropagation w/ loss function

Last Week

2 from tensorflow import keras
from tensorflow.keras import layers
from sklearn.preprocessing import LabelBinarizer

create a random data set with }500\mathrm{ pairs

of random numbers

8 x_train = np.random.randn (100,5)
0 \# Target value: What's the maximum of five numbers?

(0.1, 0.2, -0.2, 0.5, -3)

-> (4)

y_train = np.array([(np.argmax (x)) for x in x_train])

one-hot-encoding of target values

lb = LabelBinarizer()
y_train = lb.fit_transform(y_train)

setup the model architecture

model = keras.Sequential()
model.add(layers.Input (shape=(5,)))
model.add(layers.Dense(20, activation="sigmoid"))
model.add(layers.Dense(5, activation="softmax"))

```
```

```
import numpy as np
```

```
import numpy as np
24
```

\# compile it
model.compile(loss="categorical_crossentropy",
optimizer="sgd",
metrics=["accuracy"])

model.fit(x_train, y_train, epochs=20, batch_size=1)
\# create a test data set
27
30 \# train it
32
9
$x_{\text {_test }}=n p$. random. randn $(100,5)$
$y_{\text {_test }}=n p$.array $\left(\left[n p . \operatorname{argmax}(x)\right.\right.$ for x in $\left.\left.x _t e s t\right]\right)$
model.evaluate($\left.x=x_{-} t e s t, y=l b . f i t _t r a n s f o r m\left(y_{-} t e s t\right)\right)$
© Task：Given five numbers，give us the index of the highest（5－ary classification task）

燔 20 epochs，stochastic gradient descent， categorical cross entropy

｜曰ョ 77% Accuracy

Binary and N-Ary Classification / One-Hot-Encoding

Classification

ONE-HOT-ENCODING

- vector to represent OUTPUT NUMBER

EXAMPLE

- training instance

$$
\text { CATEGORY } 2 \text { (OF 3): }\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

- test output

$$
\text { CATEGORY 2: }\left[\begin{array}{l}
0.1 \\
0.7 \\
0.2
\end{array}\right]
$$

- Loss calculateo between $\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0.1 \\ 0.7 \\ 0.2\end{array}\right]$

Hausaufgabe 4

Trainieren Sie ein logistisches Regressionsmodell, um handgeschriebene Ziffern zu erkennen. Die Ziffern wurden handgeschrieben, schwarz/weiß eingescannt und die Bilder dann als 28x28-Matritzen mit Graustufeninformationen bereitgestellt. Es handelt sich nur um Nullen und Einsen, und ist damit eine binäre Klassifikationsaufgabe. Sie finden die Trainings- und Testdaten hier, und hier ein Python-Skript, mit einer Funktion zum Einlesen der Daten. Verwenden Sie die Bibliothek scikit-learn für das eigentliche Training (und schauen Sie sich ruhig ein bisschen um, was die Bibliothek sonst so bereithält).

- Wie hat's geklappt?
- Was kam raus?
- Gab es Schwierigkeiten oder Überraschungen?
\rightarrow Hausaufgabe *iffernerkennung mit neuronalem Netz und einigen selbstgeschriebenen Ziffern

Machine Learning: How to use Neural Networks with Words Word Embeddings
 VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

December 21, 2023
Winter term 2023/24

Introduction

A very simple text example

- Task: Given a sentence (with four words), predict wether the sentence is positive or negative
- E.g., a comment about a book or movie

Introduction

A very simple text example

- Task: Given a sentence (with four words), predict wether the sentence is positive or negative
- E.g., a comment about a book or movie
- Operationalization
- Binary classification task
- Four input features, one for each word
- Each word gets an index number, which will be the input of the network

demo

s10-example-01.py

Lessons Learned

- Representing words by index numbers alone is not satisfactory
- \{'awesome': 4, 'is': 5, 'terrible': 6, 'bad': 7, 'super': 8\}
- 'Terrible' and 'bad' are semantically much closer than 'terrible' and 'awesome', but this is not represented
- Replacing 'bad' with 'terrible' or 'super' is both a change of 1 index position, but has very different meaning

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung - wenn auch nicht für alle Fälle seiner Benützung - dieses Wort so erklären: Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953)

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung - wenn auch nicht für alle Fälle seiner Benützung - dieses Wort so erklären: Die Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953)

You shall know a word by the company it keeps (Firth, 1957, 11)

Distributional Semantics

Count vectors

- For each word, we count how often it appears with all other words (within a window of n tokens)
- Results in very long vectors, because all other words

$$
t=3
$$

- Many words do not appear with many other words, because of Zipf

$$
n=10000
$$

- Many elements are zero

Distributional Semantics

Count vectors

- For each word, we count how often it appears with all other words (within a window of n tokens)
- Results in very long vectors, because all other words
- Many words do not appear with many other words, because of Zipf
- Many elements are zero

Variants of count vectors

- TF-IDF instead of raw counts
- Mathematical dimensionality reduction

Count Vectors in Our Example

- Words used in similar contexts often get similar vectors
- E.g., evaluative adjectives like 'awesome', 'super', ...
- Antonyms often also get similar vectors

Count Vectors in Our Example

- Words used in similar contexts often get similar vectors
- E.g., evaluative adjectives like 'awesome', 'super', ...
- Antonyms often also get similar vectors
- Recipe
- Take a large corpus
- Extract count vectors
- Insert vectors into our training set

Section 2

Word2Vec

Literature basis

- Two very influential papers by Mikolov et al.
- Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). "Efficient Estimation of Word Representations in Vector Space". In: arXiv cs.CL. url: https://arxiv.org/pdf/1301.3781.pdf
- Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). "Distributed Representations of Words and Phrases and their Compositionality". In: Advances in Neural Information Processing Systems 26 (NIPS 2013). Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates, Inc., pp. 3111-3119. URL: http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
- Software package
- word2vec-https://github.com/tmikolov/word2vec Originally published on "Google Code"

Basics

- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors

Basics

- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors Word vectors as a by product
- Recap: Logistic/linear regression and gradient descent
- Algorithm to fit parameters to a distribution of data points
- Core ingredient: Loss function
- Result: Parameter setting θ

Basics

- No interpretable dimensions
- Dense vectors: No zeros, and much fewer dimensions than in count vectors Word vectors as a by product
- Recap: Logistic/linear regression and gradient descent
- Algorithm to fit parameters to a distribution of data points
- Core ingredient: Loss function
- Result: Parameter setting θ
- Word2vec
- Let's use these parameters as word vectors
- (one parameter vector per word)
- How to come up with a task that generates these parameters?

Two tasks

Continuous Bag of Words (CBOW)

Context words used to predict one word

Skip-gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... c1 c2 t c3 c4

Skip-gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... c1 c2 t c3 c4
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$

Skip-gram

- Context: ± 2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ... $c 1 c 2 \quad t \quad c 3 \quad c 4$
- Classifier:
- Predict for (t, c) wether c are really context words for t
- Probability of \vec{t} and \vec{c} being positive examples: $p(+\mid \vec{t}, \vec{c})$
- Vector similarity \rightarrow probability
- Similarity of vectors? Dot product
- Cosine similarity \rightarrow probability? Logistic function
- "a word is likely to occur near the target if its embedding is similar to the target embedding"

When are vectors similar?

- Operation that takes two vectors and returns a similarity score
- Linear algebra: dot product
- A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

$$
\left.\begin{array}{rlrl}
\vec{a} \cdot \vec{b} & =|\vec{a}||\vec{b}| \cos \varangle(\vec{a}, \vec{b}) & {\left[\begin{array}{l}
0 \\
3
\end{array}\right]^{0}\left[\begin{array}{l}
3 \\
7
\end{array}\right]} \\
& =\sum_{i=1}^{N} a_{i} b_{i} & & =1.10 \\
& +0.3 \\
& +3.7
\end{array}\right\} \begin{gathered}
10 \\
t \\
0 \\
+21
\end{gathered}
$$

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}=1-\sigma(\vec{t} \cdot \vec{c})
\end{aligned}
$$

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}=1-\sigma(\vec{t} \cdot \vec{c})
\end{aligned}
$$

but the context consists of more than one word!

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}=1-\sigma(\vec{t} \cdot \vec{c})
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

Skip-gram

Notation

t, c : words
\vec{t}, \vec{c} : vectors for the words

$$
\begin{aligned}
& p(+\mid t, c)=\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\sigma(\vec{t} \cdot \vec{c}) \\
& p(-\mid t, c)=1-\frac{1}{1+e^{-\vec{t} \cdot \vec{c}}}=\frac{e^{-\vec{t} \cdot \vec{c}}}{1+e^{-\vec{t} \cdot \vec{c}}}=1-\sigma(\vec{t} \cdot \vec{c})
\end{aligned}
$$

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

$$
\begin{aligned}
p\left(+\mid t, c_{1: k}\right) & =\prod_{i=1}^{k} \frac{1}{1+e^{-\vec{t} \cdot \vec{c}_{i}}} \\
\log p\left(+\mid t, c_{1: k}\right) & =\sum_{\text {VL Sprachliche Informationdverarbeitung }}^{k} \log \frac{1}{e^{-\vec{t} \cdot \vec{c}_{i}}}
\end{aligned}
$$

Skip-gram

- So far, we have assumed that we have vector \vec{t} for word t, but where do they come from?
- Basic gradient descent: We start randomly, and iteratively improve

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)

Skip-gram

Negative sampling

- Negative examples
- Training a classifier needs negative examples, i.e., words that are not in the context of each other
- Negative sampling
- For every positive tuple (t, c), we add k negative tuples
- Negative tuple $\left(t, c_{n}\right)$, with c_{n} randomly selected (and $t \neq c_{n}$)
- New 'parameter' k on this slide
- Different status than θ (the parameters we want to learn)
- Therefore: Hyperparameters

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize
- $p(+\mid t, c)$ (positive samples), and
- $p\left(-\mid t, c_{n}\right)$ (negative samples)

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize
- $p(+\mid t, c)$ (positive samples), and
- $p\left(-\mid t, c_{n}\right)$ (negative samples)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

Word2Vec

Loss

- We also need a loss function
- Idea:
- Maximize
- $p(+\mid t, c)$ (positive samples), and
- $p\left(-\mid t, c_{n}\right)$ (negative samples)

$$
L(\theta)=\sum_{(t, c)} \log p(+\mid t, c)+\sum_{\left(t, c_{n}\right)} \log p\left(-\mid t, c_{n}\right)
$$

$\theta:$ Concatenation of all $\vec{t}, \vec{c}, \vec{c}_{n}$

Remarks and observations

- Each word is used twice, with different roles
- As target word (for predicting its context)
- As context word (to be predicted from another target word)
- Different options: Only use one embedding, combine them by addition or concatenation

Section 3
Embeddings and Neural Networks

Two Options

- Embedding: Each token is replaced by a vector of numbers

Two Options

- Embedding: Each token is replaced by a vector of numbers
- Option 1
- Download pre-trained embeddings (e.g., via word2vec)
- Replace them during preprocessing
- Benefit from large training set

Two Options

- Embedding: Each token is replaced by a vector of numbers
- Option 1
- Download pre-trained embeddings (e.g., via word2vec)
- Replace them during preprocessing
- Benefit from large training set
- Option 2
- Train your own embeddings in your neural network
- In the end, it's just more parameters to learn, and we know how to do that
- Keras: keras.layers.Embedding

demo

s10-example-02.py, s10-example-03.py

Section 4
Summary

Summary

Represent text data in neural networks

- Map words to indices
- Embeddings
- Way to represent input data
- Word2Vec: Concrete method to calculate/train embeddings
- Well suited as input for neural networks
- Pre-trained embeddings
- Easy to use
- Trained on very large corpora
- Allow to incorporate some kind of knowledge into our own models that we don't have to annotate

