
Recap: Machine Learning

Naive Bayes
▶ Probabilistic method for

classification
▶ Naive because we ignore

feature dependencies
▶ Prediction model:

arg max
c∈C

p(c|f1, f2, . . . , fn)

▶ Training: Count relative
frequencies

Logistic Regression
▶ Regression method for

binary classification
▶ Output numbers as

probabilities
▶ Prediction model:

1

1 + e−(ax+b)

▶ Training: Gradient
descent with loss
function

Neural Network
▶ Layered architecture
▶ Classification type

depends on last layer
▶ Output numbers as

probabilities
▶ Prediction model:

Ln(Ln−1(L···(L1(X))))

▶ Training:
Backpropagation w/
loss function

VL Sprachliche Informationsverarbeitung WS 23/24 1 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Last Week
1 import numpy as np
2 from tensorflow import keras
3 from tensorflow.keras import layers
4 from sklearn.preprocessing import LabelBinarizer
5
6 # create a random data set with 500 pairs
7 # of random numbers
8 x_train = np.random.randn(100,5)
9

10 # Target value: What's the maximum of five numbers?
11 # (0.1, 0.2, -0.2, 0.5, -3)
12 # -> (4)
13 y_train = np.array([(np.argmax(x)) for x in x_train])
14
15 # one-hot-encoding of target values
16 lb = LabelBinarizer()
17 y_train = lb.fit_transform(y_train)
18
19 # setup the model architecture
20 model = keras.Sequential()
21 model.add(layers.Input(shape=(5,)))
22 model.add(layers.Dense(20, activation="sigmoid"))
23 model.add(layers.Dense(5, activation="softmax"))

24
25 # compile it
26 model.compile(loss="categorical_crossentropy",
27 optimizer="sgd",
28 metrics=["accuracy"])
29
30 # train it
31 model.fit(x_train , y_train , epochs=20, batch_size=1)
32
33 # create a test data set
34 x_test = np.random.randn(100,5)
35 y_test = np.array([np.argmax(x) for x in x_test])
36 model.evaluate(x=x_test, y=lb.fit_transform(y_test))

 Task: Given five numbers, give us the
index of the highest (5-ary classification
task)

 20 epochs, stochastic gradient descent,
categorical cross entropy

 77% Accuracy
VL Sprachliche Informationsverarbeitung WS 23/24 2 / 27

Binary and N-Ary Classification / One-Hot-Encoding

VL Sprachliche Informationsverarbeitung WS 23/24 3 / 27

Hausaufgabe 3
Trainieren Sie ein logistisches Regressionsmodell, um handgeschriebene Ziffern zu er-
kennen. Die Ziffern wurden handgeschrieben, schwarz/weiß eingescannt und die Bilder
dann als 28x28-Matritzen mit Graustufeninformationen bereitgestellt. Es handelt sich
nur um Nullen und Einsen, und ist damit eine binäre Klassifikationsaufgabe. Sie fin-
den die Trainings- und Testdaten hier, und hier ein Python-Skript, mit einer Funktion
zum Einlesen der Daten. Verwenden Sie die Bibliothek scikit-learn für das eigentliche
Training (und schauen Sie sich ruhig ein bisschen um, was die Bibliothek sonst so
bereithält).

▶ Wie hat’s geklappt?
▶ Was kam raus?
▶ Gab es Schwierigkeiten oder Überraschungen?
 Hausaufgabe 4: Ziffernerkennung mit neuronalem Netz und einigen selbstgeschriebenen

Ziffern

VL Sprachliche Informationsverarbeitung WS 23/24 4 / 27

Nils Reiter

Machine Learning: How to use Neural Networks with Words
Word Embeddings

VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

December 21, 2023
Winter term 2023/24

Neural Networks

Introduction
A very simple text example

▶ Task: Given a sentence (with four words), predict wether the sentence is positive or
negative
▶ E.g., a comment about a book or movie

▶ Operationalization
▶ Binary classification task
▶ Four input features, one for each word

▶ Each word gets an index number, which will be the input of the network

VL Sprachliche Informationsverarbeitung WS 23/24 6 / 27

Neural Networks

Introduction
A very simple text example

▶ Task: Given a sentence (with four words), predict wether the sentence is positive or
negative
▶ E.g., a comment about a book or movie

▶ Operationalization
▶ Binary classification task
▶ Four input features, one for each word

▶ Each word gets an index number, which will be the input of the network

VL Sprachliche Informationsverarbeitung WS 23/24 6 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

demo
s10-example-01.py

Neural Networks

Lessons Learned

▶ Representing words by index numbers alone is not satisfactory
▶ {'awesome': 4, 'is': 5, 'terrible': 6, 'bad': 7, 'super': 8}

▶ ‘Terrible’ and ‘bad’ are semantically much closer than ‘terrible’ and ‘awesome’, but this is not
represented

▶ Replacing ‘bad’ with ‘terrible’ or ‘super’ is both a change of 1 index position, but has very
different meaning

VL Sprachliche Informationsverarbeitung WS 23/24 8 / 27

Neural Networks

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung
– wenn auch nicht für alle Fälle seiner Benützung – dieses Wort so erklären: Die
Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953)

You shall know a word by the company it keeps (Firth, 1957, 11)

VL Sprachliche Informationsverarbeitung WS 23/24 9 / 27

Neural Networks

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung
– wenn auch nicht für alle Fälle seiner Benützung – dieses Wort so erklären: Die
Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953)

You shall know a word by the company it keeps (Firth, 1957, 11)

VL Sprachliche Informationsverarbeitung WS 23/24 9 / 27

Neural Networks

Distributional Semantics

Count vectors
▶ For each word, we count how often it appears with all other words (within a window of n

tokens)
▶ Results in very long vectors, because all other words
▶ Many words do not appear with many other words, because of Zipf

▶ Many elements are zero

Variants of count vectors
▶ TF-IDF instead of raw counts
▶ Mathematical dimensionality reduction

VL Sprachliche Informationsverarbeitung WS 23/24 10 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Neural Networks

Distributional Semantics

Count vectors
▶ For each word, we count how often it appears with all other words (within a window of n

tokens)
▶ Results in very long vectors, because all other words
▶ Many words do not appear with many other words, because of Zipf

▶ Many elements are zero
Variants of count vectors
▶ TF-IDF instead of raw counts
▶ Mathematical dimensionality reduction

VL Sprachliche Informationsverarbeitung WS 23/24 10 / 27

Neural Networks

Count Vectors in Our Example

▶ Words used in similar contexts often get similar vectors
▶ E.g., evaluative adjectives like ‘awesome’, ‘super’, …
▶ Antonyms often also get similar vectors

▶ Recipe
▶ Take a large corpus
▶ Extract count vectors
▶ Insert vectors into our training set

VL Sprachliche Informationsverarbeitung WS 23/24 11 / 27

Neural Networks

Count Vectors in Our Example

▶ Words used in similar contexts often get similar vectors
▶ E.g., evaluative adjectives like ‘awesome’, ‘super’, …
▶ Antonyms often also get similar vectors

▶ Recipe
▶ Take a large corpus
▶ Extract count vectors
▶ Insert vectors into our training set

VL Sprachliche Informationsverarbeitung WS 23/24 11 / 27

Section 2

Word2Vec

Word2Vec

Literature basis

▶ Two very influential papers by Mikolov et al.
▶ Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word

Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf

▶ Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26 (NIPS 2013). Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

▶ Software package
▶ word2vec – https://github.com/tmikolov/word2vec

Originally published on “Google Code”

VL Sprachliche Informationsverarbeitung WS 23/24 13 / 27

https://arxiv.org/pdf/1301.3781.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://github.com/tmikolov/word2vec

Word2Vec

Basics

▶ No interpretable dimensions
▶ Dense vectors: No zeros, and much fewer dimensions than in count vectors

Word vectors as a by product
▶ Recap: Logistic/linear regression and gradient descent

▶ Algorithm to fit parameters to a distribution of data points
▶ Core ingredient: Loss function
▶ Result: Parameter setting θ

▶ Word2vec
▶ Let’s use these parameters as word vectors

▶ (one parameter vector per word)
▶ How to come up with a task that generates these parameters?

VL Sprachliche Informationsverarbeitung WS 23/24 14 / 27

Word2Vec

Basics

▶ No interpretable dimensions
▶ Dense vectors: No zeros, and much fewer dimensions than in count vectors

Word vectors as a by product
▶ Recap: Logistic/linear regression and gradient descent

▶ Algorithm to fit parameters to a distribution of data points
▶ Core ingredient: Loss function
▶ Result: Parameter setting θ

▶ Word2vec
▶ Let’s use these parameters as word vectors

▶ (one parameter vector per word)
▶ How to come up with a task that generates these parameters?

VL Sprachliche Informationsverarbeitung WS 23/24 14 / 27

Word2Vec

Basics

▶ No interpretable dimensions
▶ Dense vectors: No zeros, and much fewer dimensions than in count vectors

Word vectors as a by product
▶ Recap: Logistic/linear regression and gradient descent

▶ Algorithm to fit parameters to a distribution of data points
▶ Core ingredient: Loss function
▶ Result: Parameter setting θ

▶ Word2vec
▶ Let’s use these parameters as word vectors

▶ (one parameter vector per word)
▶ How to come up with a task that generates these parameters?

VL Sprachliche Informationsverarbeitung WS 23/24 14 / 27

Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict one word

Skip-Gram
One word used to predict its context

VL Sprachliche Informationsverarbeitung WS 23/24 15 / 27

Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4

▶ Classifier:
▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Vector similarity → probability
▶ Similarity of vectors? Dot product
▶ Cosine similarity → probability? Logistic function
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (2023, 18 f.)

VL Sprachliche Informationsverarbeitung WS 23/24 16 / 27

Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Vector similarity → probability
▶ Similarity of vectors? Dot product
▶ Cosine similarity → probability? Logistic function
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (2023, 18 f.)

VL Sprachliche Informationsverarbeitung WS 23/24 16 / 27

Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4
▶ Classifier:

▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Vector similarity → probability
▶ Similarity of vectors? Dot product
▶ Cosine similarity → probability? Logistic function
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (2023, 18 f.)

VL Sprachliche Informationsverarbeitung WS 23/24 16 / 27

Word2Vec

When are vectors similar?

▶ Operation that takes two vectors and returns a similarity score
▶ Linear algebra: dot product

▶ A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

a⃗ · b⃗ = |⃗a||⃗b| cos∢(⃗a, b⃗)

=

N∑
i=1

aibi

VL Sprachliche Informationsverarbeitung WS 23/24 17 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c
= 1− σ(⃗t · c⃗)

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

VL Sprachliche Informationsverarbeitung WS 23/24 18 / 27

Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c
= 1− σ(⃗t · c⃗)

but the context consists of more than one word!

Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

VL Sprachliche Informationsverarbeitung WS 23/24 18 / 27

Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c
= 1− σ(⃗t · c⃗)

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci

VL Sprachliche Informationsverarbeitung WS 23/24 18 / 27

Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c
= 1− σ(⃗t · c⃗)

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ciVL Sprachliche Informationsverarbeitung WS 23/24 18 / 27

Word2Vec

Skip-gram

▶ So far, we have assumed that we have vector t⃗ for word t, but where do they come from?
▶ Basic gradient descent: We start randomly, and iteratively improve

VL Sprachliche Informationsverarbeitung WS 23/24 19 / 27

Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other

▶ Negative sampling
▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27

Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27

Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27

Nils Reiter

Word2Vec

Word2Vec
Loss

▶ We also need a loss function
▶ Idea:

▶ Maximize
▶ p(+|t, c) (positive samples), and
▶ p(−|t, cn) (negative samples)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all t⃗, c⃗, c⃗n

VL Sprachliche Informationsverarbeitung WS 23/24 21 / 27

Word2Vec

Word2Vec
Loss

▶ We also need a loss function
▶ Idea:

▶ Maximize
▶ p(+|t, c) (positive samples), and
▶ p(−|t, cn) (negative samples)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all t⃗, c⃗, c⃗n

VL Sprachliche Informationsverarbeitung WS 23/24 21 / 27

Word2Vec

Word2Vec
Loss

▶ We also need a loss function
▶ Idea:

▶ Maximize
▶ p(+|t, c) (positive samples), and
▶ p(−|t, cn) (negative samples)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all t⃗, c⃗, c⃗n

VL Sprachliche Informationsverarbeitung WS 23/24 21 / 27

Word2Vec

Remarks and observations

▶ Each word is used twice, with different roles
▶ As target word (for predicting its context)
▶ As context word (to be predicted from another target word)
▶ Different options: Only use one embedding, combine them by addition or concatenation

VL Sprachliche Informationsverarbeitung WS 23/24 22 / 27

Section 3

Embeddings and Neural Networks

Nils Reiter

Nils Reiter

Nils Reiter

Embeddings and Neural Networks

Two Options

▶ Embedding: Each token is replaced by a vector of numbers

▶ Option 1
▶ Download pre-trained embeddings (e.g., via word2vec)
▶ Replace them during preprocessing
▶ Benefit from large training set

▶ Option 2
▶ Train your own embeddings in your neural network
▶ In the end, it’s just more parameters to learn, and we know how to do that
▶ Keras: keras.layers.Embedding

VL Sprachliche Informationsverarbeitung WS 23/24 24 / 27

Embeddings and Neural Networks

Two Options

▶ Embedding: Each token is replaced by a vector of numbers
▶ Option 1

▶ Download pre-trained embeddings (e.g., via word2vec)
▶ Replace them during preprocessing
▶ Benefit from large training set

▶ Option 2
▶ Train your own embeddings in your neural network
▶ In the end, it’s just more parameters to learn, and we know how to do that
▶ Keras: keras.layers.Embedding

VL Sprachliche Informationsverarbeitung WS 23/24 24 / 27

Embeddings and Neural Networks

Two Options

▶ Embedding: Each token is replaced by a vector of numbers
▶ Option 1

▶ Download pre-trained embeddings (e.g., via word2vec)
▶ Replace them during preprocessing
▶ Benefit from large training set

▶ Option 2
▶ Train your own embeddings in your neural network
▶ In the end, it’s just more parameters to learn, and we know how to do that
▶ Keras: keras.layers.Embedding

VL Sprachliche Informationsverarbeitung WS 23/24 24 / 27

demo
s10-example-02.py, s10-example-03.py

Section 4

Summary

Summary

Summary

Represent text data in neural networks
▶ Map words to indices
▶ Embeddings

▶ Way to represent input data
▶ Word2Vec: Concrete method to calculate/train embeddings
▶ Well suited as input for neural networks
▶ Pre-trained embeddings

▶ Easy to use
▶ Trained on very large corpora
▶ Allow to incorporate some kind of knowledge into our own models that we don’t have to

annotate

VL Sprachliche Informationsverarbeitung WS 23/24 27 / 27

	Neural Networks
	Word2Vec
	Embeddings and Neural Networks
	Summary

