
Recap: Machine Learning

Naive Bayes
▶ Probabilistic method for

classification
▶ Naive because we ignore

feature dependencies
▶ Prediction model:

arg max
c∈C

p(c|f1, f2, . . . , fn)

▶ Training: Count relative
frequencies

Logistic Regression
▶ Regression method for

binary classification
▶ Output numbers as

probabilities
▶ Prediction model:

1

1 + e−(ax+b)

▶ Training: Gradient
descent with loss
function

Neural Network
▶ Layered architecture
▶ Classification type

depends on last layer
▶ Output numbers as

probabilities
▶ Prediction model:

Ln(Ln−1(L···(L1(X))))

▶ Training:
Backpropagation w/
loss function
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Last Week
1 import numpy as np
2 from tensorflow import keras
3 from tensorflow.keras import layers
4 from sklearn.preprocessing import LabelBinarizer
5
6 # create a random data set with 500 pairs
7 # of random numbers
8 x_train = np.random.randn(100,5)
9

10 # Target value: What's the maximum of five numbers?
11 # (0.1, 0.2, -0.2, 0.5, -3)
12 # -> (4)
13 y_train = np.array([(np.argmax(x)) for x in x_train])
14
15 # one-hot-encoding of target values
16 lb = LabelBinarizer()
17 y_train = lb.fit_transform(y_train)
18
19 # setup the model architecture
20 model = keras.Sequential()
21 model.add(layers.Input(shape=(5,)))
22 model.add(layers.Dense(20, activation="sigmoid"))
23 model.add(layers.Dense(5, activation="softmax"))

24
25 # compile it
26 model.compile(loss="categorical_crossentropy",
27 optimizer="sgd",
28 metrics=["accuracy"])
29
30 # train it
31 model.fit(x_train , y_train , epochs=20, batch_size=1)
32
33 # create a test data set
34 x_test = np.random.randn(100,5)
35 y_test = np.array([np.argmax(x) for x in x_test])
36 model.evaluate(x=x_test, y=lb.fit_transform(y_test))

 Task: Given five numbers, give us the
index of the highest (5-ary classification
task)

 20 epochs, stochastic gradient descent,
categorical cross entropy

 77% Accuracy
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Binary and N-Ary Classification / One-Hot-Encoding
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Hausaufgabe 3
Trainieren Sie ein logistisches Regressionsmodell, um handgeschriebene Ziffern zu er-
kennen. Die Ziffern wurden handgeschrieben, schwarz/weiß eingescannt und die Bilder
dann als 28x28-Matritzen mit Graustufeninformationen bereitgestellt. Es handelt sich
nur um Nullen und Einsen, und ist damit eine binäre Klassifikationsaufgabe. Sie fin-
den die Trainings- und Testdaten hier, und hier ein Python-Skript, mit einer Funktion
zum Einlesen der Daten. Verwenden Sie die Bibliothek scikit-learn für das eigentliche
Training (und schauen Sie sich ruhig ein bisschen um, was die Bibliothek sonst so
bereithält).

▶ Wie hat’s geklappt?
▶ Was kam raus?
▶ Gab es Schwierigkeiten oder Überraschungen?
 Hausaufgabe 4: Ziffernerkennung mit neuronalem Netz und einigen selbstgeschriebenen

Ziffern
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Neural Networks

Introduction
A very simple text example

▶ Task: Given a sentence (with four words), predict wether the sentence is positive or
negative
▶ E.g., a comment about a book or movie

▶ Operationalization
▶ Binary classification task
▶ Four input features, one for each word

▶ Each word gets an index number, which will be the input of the network

VL Sprachliche Informationsverarbeitung WS 23/24 6 / 27



Neural Networks

Introduction
A very simple text example

▶ Task: Given a sentence (with four words), predict wether the sentence is positive or
negative
▶ E.g., a comment about a book or movie

▶ Operationalization
▶ Binary classification task
▶ Four input features, one for each word

▶ Each word gets an index number, which will be the input of the network

VL Sprachliche Informationsverarbeitung WS 23/24 6 / 27

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter



demo
s10-example-01.py



Neural Networks

Lessons Learned

▶ Representing words by index numbers alone is not satisfactory
▶ {'awesome': 4, 'is': 5, 'terrible': 6, 'bad': 7, 'super': 8}

▶ ‘Terrible’ and ‘bad’ are semantically much closer than ‘terrible’ and ‘awesome’, but this is not
represented

▶ Replacing ‘bad’ with ‘terrible’ or ‘super’ is both a change of 1 index position, but has very
different meaning

VL Sprachliche Informationsverarbeitung WS 23/24 8 / 27



Neural Networks

What is Semantics at all?

Man kann für eine große Klasse von Fällen der Benützung des Wortes Bedeutung
– wenn auch nicht für alle Fälle seiner Benützung – dieses Wort so erklären: Die
Bedeutung eines Wortes ist sein Gebrauch in der Sprache. (Wittgenstein, 1953)

You shall know a word by the company it keeps (Firth, 1957, 11)
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Neural Networks

Distributional Semantics

Count vectors
▶ For each word, we count how often it appears with all other words (within a window of n

tokens)
▶ Results in very long vectors, because all other words
▶ Many words do not appear with many other words, because of Zipf

▶ Many elements are zero

Variants of count vectors
▶ TF-IDF instead of raw counts
▶ Mathematical dimensionality reduction
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Neural Networks

Count Vectors in Our Example

▶ Words used in similar contexts often get similar vectors
▶ E.g., evaluative adjectives like ‘awesome’, ‘super’, …
▶ Antonyms often also get similar vectors

▶ Recipe
▶ Take a large corpus
▶ Extract count vectors
▶ Insert vectors into our training set
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Section 2

Word2Vec



Word2Vec

Literature basis

▶ Two very influential papers by Mikolov et al.
▶ Tomáš Mikolov/Kai Chen/Greg Corrado/Jeffrey Dean (2013). “Efficient Estimation of Word

Representations in Vector Space”. In: arXiv cs.CL. url:
https://arxiv.org/pdf/1301.3781.pdf

▶ Tomáš Mikolov/Ilya Sutskever/Kai Chen/Greg S Corrado/Jeff Dean (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in Neural
Information Processing Systems 26 (NIPS 2013). Ed. by
C. J. C. Burges/L. Bottou/M. Welling/Z. Ghahramani/K. Q. Weinberger. Curran Associates,
Inc., pp. 3111–3119. url: http://papers.nips.cc/paper/5021-distributed-
representations-of-words-and-phrases-and-their-compositionality.pdf

▶ Software package
▶ word2vec – https://github.com/tmikolov/word2vec

Originally published on “Google Code”
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Word2Vec

Basics

▶ No interpretable dimensions
▶ Dense vectors: No zeros, and much fewer dimensions than in count vectors

Word vectors as a by product
▶ Recap: Logistic/linear regression and gradient descent

▶ Algorithm to fit parameters to a distribution of data points
▶ Core ingredient: Loss function
▶ Result: Parameter setting θ

▶ Word2vec
▶ Let’s use these parameters as word vectors

▶ (one parameter vector per word)
▶ How to come up with a task that generates these parameters?
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Word2Vec

Two tasks

Continuous Bag of Words (CBOW)
Context words used to predict one word

Skip-Gram
One word used to predict its context
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Word2Vec

Skip-gram

▶ Context: ±2 words around target word t
... dogs, such as a German Shepherd or a Labrador, ...

c1 c2 t c3 c4

▶ Classifier:
▶ Predict for (t, c) wether c are really context words for t
▶ Probability of t⃗ and c⃗ being positive examples: p(+|⃗t, c⃗)

▶ Vector similarity → probability
▶ Similarity of vectors? Dot product 
▶ Cosine similarity → probability? Logistic function 
▶ “a word is likely to occur near the target if its embedding is similar to the target embedding”

Jurafsky/Martin (2023, 18 f.)
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Word2Vec

When are vectors similar?

▶ Operation that takes two vectors and returns a similarity score
▶ Linear algebra: dot product

▶ A.k.a. scalar product, inner product, Skalarprodukt, Punktprodukt, inneres Produkt

a⃗ · b⃗ = |⃗a||⃗b| cos∢(⃗a, b⃗)

=

N∑
i=1

aibi
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Word2Vec

Skip-gram
Notation
t, c: words
t⃗, c⃗: vectors for the words

p(+|t, c) =
1

1 + e−⃗t·⃗c
= σ(⃗t · c⃗)

p(−|t, c) = 1− 1

1 + e−⃗t·⃗c
=

e−⃗t·⃗c

1 + e−⃗t·⃗c
= 1− σ(⃗t · c⃗)

but the context consists of more than one word!
Assumption: They are independent, allowing multiplication

p(+|t, c1:k) =

k∏
i=1

1

1 + e−⃗t·⃗ci

log p(+|t, c1:k) =

k∑
i=1

log 1

1 + e−⃗t·⃗ci
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Word2Vec

Skip-gram

▶ So far, we have assumed that we have vector t⃗ for word t, but where do they come from?
▶ Basic gradient descent: We start randomly, and iteratively improve
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Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other

▶ Negative sampling
▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27



Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27



Word2Vec

Skip-gram
Negative sampling

▶ Negative examples
▶ Training a classifier needs negative examples, i.e., words that are not in the context of each

other
▶ Negative sampling

▶ For every positive tuple (t, c), we add k negative tuples
▶ Negative tuple (t, cn), with cn randomly selected (and t ̸= cn)

▶ New ‘parameter’ k on this slide
▶ Different status than θ (the parameters we want to learn)
▶ Therefore: Hyperparameters

VL Sprachliche Informationsverarbeitung WS 23/24 20 / 27

Nils Reiter



Word2Vec

Word2Vec
Loss

▶ We also need a loss function
▶ Idea:

▶ Maximize
▶ p(+|t, c) (positive samples), and
▶ p(−|t, cn) (negative samples)

L(θ) =
∑
(t,c)

log p(+|t, c) +
∑
(t,cn)

log p(−|t, cn)

θ: Concatenation of all t⃗, c⃗, c⃗n
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Word2Vec

Remarks and observations

▶ Each word is used twice, with different roles
▶ As target word (for predicting its context)
▶ As context word (to be predicted from another target word)
▶ Different options: Only use one embedding, combine them by addition or concatenation
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Section 3

Embeddings and Neural Networks
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Embeddings and Neural Networks

Two Options

▶ Embedding: Each token is replaced by a vector of numbers

▶ Option 1
▶ Download pre-trained embeddings (e.g., via word2vec)
▶ Replace them during preprocessing
▶ Benefit from large training set

▶ Option 2
▶ Train your own embeddings in your neural network
▶ In the end, it’s just more parameters to learn, and we know how to do that
▶ Keras: keras.layers.Embedding
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demo
s10-example-02.py, s10-example-03.py



Section 4

Summary



Summary

Summary

Represent text data in neural networks
▶ Map words to indices
▶ Embeddings

▶ Way to represent input data
▶ Word2Vec: Concrete method to calculate/train embeddings
▶ Well suited as input for neural networks
▶ Pre-trained embeddings

▶ Easy to use
▶ Trained on very large corpora
▶ Allow to incorporate some kind of knowledge into our own models that we don’t have to

annotate
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