
Recap: Embeddings

Represent text data in neural networks
▶ Map words to indices
▶ Embeddings

▶ Way to represent input data
▶ Word2Vec: Concrete method to calculate/train embeddings
▶ Well suited as input for neural networks
▶ Pre-trained embeddings

▶ Easy to use
▶ Trained on very large corpora
▶ Allow to incorporate some kind of knowledge into our own models that we don’t have to

annotate

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 1 / 32

Hausaufgabe 5

Designen und trainieren Sie ein neuronales Netzwerk, um die vorher benutzten
handgeschriebenen Ziffern zu erkennen. Fügen Sie dabei einige selbstgeschriebene Ziffern in
den Datensatz ein.

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 2 / 32

Machine Learning: Overfitting & Sequence Labeling
VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

January 11, 2024
Winter term 2023/24

Section 1

Overfitting

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?
▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 5 / 32

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?

▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 5 / 32

Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?
▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 5 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance

▶ You are unable to apply your knowledge to situations not exactly as in the test
▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 6 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance
▶ You are unable to apply your knowledge to situations not exactly as in the test

▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 6 / 32

Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance
▶ You are unable to apply your knowledge to situations not exactly as in the test

▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung
Reiter VL Sprachliche Informationsverarbeitung WS 23/24 6 / 32

Overfitting

Real-World Examples

▶ Collection of real-world examples of overfitting: https://stats.stackexchange.com/
questions/128616/whats-a-real-world-example-of-overfitting

▶ Machine learning for COVID-19 detection on chest scans Roberts et al. (2021)
▶ “none of the models identified are of potential clinical use due to methodological flaws

and/or underlying biases” Roberts et al. (2021, 200)
▶ “Using a public dataset alone without additional new data can lead to community-wide

overfitting on this dataset. Even if each individual study observes sufficient precautions to
avoid overfitting, the fact that the community is focused on outperforming benchmarks on a
single public dataset encourages overfitting.” Roberts et al. (2021, 212)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 7 / 32

https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting

Overfitting

Real-World Examples

▶ Collection of real-world examples of overfitting: https://stats.stackexchange.com/
questions/128616/whats-a-real-world-example-of-overfitting

▶ Machine learning for COVID-19 detection on chest scans Roberts et al. (2021)
▶ “none of the models identified are of potential clinical use due to methodological flaws

and/or underlying biases” Roberts et al. (2021, 200)
▶ “Using a public dataset alone without additional new data can lead to community-wide

overfitting on this dataset. Even if each individual study observes sufficient precautions to
avoid overfitting, the fact that the community is focused on outperforming benchmarks on a
single public dataset encourages overfitting.” Roberts et al. (2021, 212)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 7 / 32

https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting
https://stats.stackexchange.com/questions/128616/whats-a-real-world-example-of-overfitting

Overfitting

Overfitting and Neural Networks

 Overfitting is not a purely technical problem – no purely technical solution
Classical machine learning
▶ Feature selection can avoid relying on irrelevant features
▶ But this is only one source for overfitting

Neural networks are overfitting machines
▶ Layered architecture ⇒ Any relation between x and y can be learned

▶ including a fixed set of if/else rules

Techniques against overfitting (besides critical thinking and use of brain)
▶ Regularization
▶ Dropout

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 8 / 32

Overfitting

Overfitting and Neural Networks

 Overfitting is not a purely technical problem – no purely technical solution
Classical machine learning
▶ Feature selection can avoid relying on irrelevant features
▶ But this is only one source for overfitting

Neural networks are overfitting machines
▶ Layered architecture ⇒ Any relation between x and y can be learned

▶ including a fixed set of if/else rules

Techniques against overfitting (besides critical thinking and use of brain)
▶ Regularization
▶ Dropout

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 8 / 32

Nils Reiter

Section 2

Regularization

Regularization

Intuition

Figure: Visual representation of regularization results (Skansi, 2018, 108)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 10 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Regularization

Formalization

▶ Formally, regularization is a parameter added to the loss

J(w⃗) = Joriginal(w⃗) + R

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 11 / 32

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2

▶ In practice, we drop the square root and calculate L2 norm of the weight vector during
training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 12 / 32

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2
▶ In practice, we drop the square root and calculate L2 norm of the weight vector during

training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 12 / 32

Nils Reiter

Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2
▶ In practice, we drop the square root and calculate L2 norm of the weight vector during

training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 12 / 32

Nils Reiter

Regularization

L2-Regularization

▶ What does it do?

▶ If weights w⃗ are large: Loss is increased more
▶ Large weights are only considered if the increased loss is “worth it”, i.e., if it is

counterbalanced by a real error reduction
▶ Small weights are preferred

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 13 / 32

Regularization

L2-Regularization

▶ What does it do?
▶ If weights w⃗ are large: Loss is increased more
▶ Large weights are only considered if the increased loss is “worth it”, i.e., if it is

counterbalanced by a real error reduction
▶ Small weights are preferred

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 13 / 32

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 14 / 32

https://keras.io/api/layers/regularizers/
Nils Reiter

Nils Reiter

Nils Reiter

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 14 / 32

https://keras.io/api/layers/regularizers/

Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 14 / 32

https://keras.io/api/layers/regularizers/
Nils Reiter

Nils Reiter

Nils Reiter

Section 3

Dropout

Dropout

Dropout

▶ Regularization: Numerically combatting overfitting
▶ Dropout: Structurally combatting overfitting Hinton et al. (2012)

▶ A new hyperparameter π = [0; 1]
▶ In each epoch, every weight is set to zero with a probability of π

[Dropout] prevents complex co-adaptations in which a feature detector is only helpful
in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

Hinton et al. (2012, 1)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 16 / 32

Dropout

Dropout

▶ Regularization: Numerically combatting overfitting
▶ Dropout: Structurally combatting overfitting Hinton et al. (2012)

▶ A new hyperparameter π = [0; 1]
▶ In each epoch, every weight is set to zero with a probability of π

[Dropout] prevents complex co-adaptations in which a feature detector is only helpful
in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

Hinton et al. (2012, 1)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 16 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 0

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 1

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 32

Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 2

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 32

Dropout

Dropout
Implementation

▶ Why?
▶ Dropout forces the network to learn redundancies
▶ Use in the first layers, where features are detected

▶ Implementation
▶ In Keras, dropout is realized as additional layer
▶ Applies to the layer before the dropout layer

1 model.add(layers.Dense(20)) # edges are dropped here
2 model.add(layers.Dropout(0.5)) # dropout layer (not a real layer though)
3 model.add(layers.Dense(10)) # no edges dropped

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 18 / 32

Dropout

Dropout
Implementation

▶ Why?
▶ Dropout forces the network to learn redundancies
▶ Use in the first layers, where features are detected

▶ Implementation
▶ In Keras, dropout is realized as additional layer
▶ Applies to the layer before the dropout layer

1 model.add(layers.Dense(20)) # edges are dropped here
2 model.add(layers.Dropout(0.5)) # dropout layer (not a real layer though)
3 model.add(layers.Dense(10)) # no edges dropped

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 18 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Section 4

Sequence Labeling

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies

▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32

Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32

Sequence Labeling

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and not independent of each other

▶ I.e.: The prediction of a class for one item influences the next

Example (Part of speech tagging)
▶ “the dog barks” → “DET NN VBZ”
▶ Predicting “DET VBZ NN” is extremely unlikely, because verbs usually don’t follow

determiners

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 21 / 32

Sequence Labeling

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and not independent of each other

▶ I.e.: The prediction of a class for one item influences the next

Example (Part of speech tagging)
▶ “the dog barks” → “DET NN VBZ”
▶ Predicting “DET VBZ NN” is extremely unlikely, because verbs usually don’t follow

determiners

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 21 / 32

Nils Reiter

Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 22 / 32

Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 22 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Towards Recurrent Neural Networks

To work with sequences, we need to include the sequence into the model

Notation
X = (X⃗1, X⃗2, . . .) The input data set containing a sequence of instances

(e.g., a sequence of words)
X⃗i = (x1, x2, . . .) One instance with feature values

(e.g., embedding dimensions)
Yi Output for instance Xi

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 23 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Recurrent Neural Networks
Example

y

x1

x2

Xi
b1

b2

b3

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 24 / 32

Nils Reiter

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 32

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

y

x1

x2

Xi b1

b2

b3

recurrent connection

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 32

Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3

y

x1

x2

Xi b1

b2

b3

recurrent connection

y

x1

x2

Xi b1

b2

b3

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Recurrent Neural Networks
▶ FFNN, CNN: Weights between neurons
▶ RNN: Additional weights for recurrent connections

Input shape
▶ Before: Network gets at one object at a time, potentially with multiple features
▶ Now: Network gets sequence of objects at a time, each one potentially with multiple

features
▶ RNN layers need 2D input:

▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings would go)
▶ For training, we need multiple sequences, making the training data 3D

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 26 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Recurrent Neural Networks
▶ FFNN, CNN: Weights between neurons
▶ RNN: Additional weights for recurrent connections

Input shape
▶ Before: Network gets at one object at a time, potentially with multiple features
▶ Now: Network gets sequence of objects at a time, each one potentially with multiple

features
▶ RNN layers need 2D input:

▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings would go)
▶ For training, we need multiple sequences, making the training data 3D

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 26 / 32

Nils Reiter

Nils Reiter

Sequence Labeling

Demo

▶ Simple task: Learn to count distances
▶ Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
▶ E.g.: “010010001” becomes “000100100”
▶ Model has to learn to count the distance
▶ Training data can easily be generated

demo

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 27 / 32

Nils Reiter

Sequence Labeling

Demo

▶ Simple task: Learn to count distances
▶ Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
▶ E.g.: “010010001” becomes “000100100”
▶ Model has to learn to count the distance
▶ Training data can easily be generated

demo

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 27 / 32

Sequence Labeling

Implementation in keras

▶ tf.keras.layers.SimpleRNN
▶ Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/

Selected parameters:
▶ recurrent_dropout=0.0 Dropout for recurrent links
▶ return_sequences=False Wether to continue the network with the entire sequence or just the

last element

1 model.add(layers.SimpleRNN(...))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 28 / 32

https://keras.io/api/layers/recurrent_layers/simple_rnn/
Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

BIO Scheme
▶ POS-Tagging is easy, because structurally simple: Each token is assigned to one class
▶ Named entity recognition (and many other tasks) is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …

▶ BIO scheme
▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 29 / 32

Sequence Labeling

BIO Scheme
▶ POS-Tagging is easy, because structurally simple: Each token is assigned to one class
▶ Named entity recognition (and many other tasks) is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …
▶ BIO scheme

▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 29 / 32

Sequence Labeling

BIO Scheme
▶ POS-Tagging is easy, because structurally simple: Each token is assigned to one class
▶ Named entity recognition (and many other tasks) is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …
▶ BIO scheme

▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 29 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 30 / 32

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 30 / 32

Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 30 / 32

Nils Reiter

Nils Reiter

Nils Reiter

Section 5

Summary

Summary

Summary

Overfitting
▶ Bla

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 32 / 32

Nils Reiter

Nils Reiter

	Overfitting
	Regularization
	Dropout
	Sequence Labeling
	Summary

