
Recap: Embeddings

Represent text data in neural networks
▶ Map words to indices
▶ Embeddings

▶ Way to represent input data
▶ Word2Vec: Concrete method to calculate/train embeddings
▶ Well suited as input for neural networks
▶ Pre-trained embeddings

▶ Easy to use
▶ Trained on very large corpora
▶ Allow to incorporate some kind of knowledge into our own models that we don’t have to

annotate
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Hausaufgabe 5

Designen und trainieren Sie ein neuronales Netzwerk, um die vorher benutzten
handgeschriebenen Ziffern zu erkennen. Fügen Sie dabei einige selbstgeschriebene Ziffern in
den Datensatz ein.
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Section 1

Overfitting



Overfitting

Introduction

▶ ‘Fitting’: Train a model on data (= “fit” it to the data)
▶ Underfitting: The model is not well fitted to the data, i.e., accuracy is low
▶ Overfitting: The model is fitted too well to the data, i.e., accuracy is high

Why is overfitting a problem?
▶ We want to the model to behave well “in the wild”
▶ It needs to generalize from training data
▶ If it is overfitted, it works very well on training data, and very badly on test data
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Overfitting

Intuition
≃ Learning by heart

Example
▶ Learning by heart gets you through the test

▶ I.e., systems achieve high performance

▶ You are unable to apply your knowledge to situations not exactly as in the test
▶ I.e., system performance is lower in the wild

Figure: Führerscheinprüfung
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Overfitting

Real-World Examples

▶ Collection of real-world examples of overfitting: https://stats.stackexchange.com/
questions/128616/whats-a-real-world-example-of-overfitting

▶ Machine learning for COVID-19 detection on chest scans Roberts et al. (2021)
▶ “none of the models identified are of potential clinical use due to methodological flaws

and/or underlying biases” Roberts et al. (2021, 200)
▶ “Using a public dataset alone without additional new data can lead to community-wide

overfitting on this dataset. Even if each individual study observes sufficient precautions to
avoid overfitting, the fact that the community is focused on outperforming benchmarks on a
single public dataset encourages overfitting.” Roberts et al. (2021, 212)
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Overfitting

Overfitting and Neural Networks

 Overfitting is not a purely technical problem – no purely technical solution
Classical machine learning
▶ Feature selection can avoid relying on irrelevant features
▶ But this is only one source for overfitting

Neural networks are overfitting machines
▶ Layered architecture ⇒ Any relation between x and y can be learned

▶ including a fixed set of if/else rules

Techniques against overfitting (besides critical thinking and use of brain)
▶ Regularization
▶ Dropout
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Section 2

Regularization



Regularization

Intuition

Figure: Visual representation of regularization results (Skansi, 2018, 108)
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Regularization

Formalization

▶ Formally, regularization is a parameter added to the loss

J(w⃗) = Joriginal(w⃗) + R
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Regularization

L2-Regularization

L2-Norm (a. k. a. Euclidean norm) Tikhonov (1963)
▶ Given a vector x⃗ = (x1, x2, . . . , xn),

its L2 norm is L2(⃗x) =
√

x21 + x22 + · · ·+ x2n = ||⃗x||2

▶ In practice, we drop the square root and calculate L2 norm of the weight vector during
training:

(||w⃗||2)2 =
n∑

i=0

w2
i

▶ Regularization rate λ: Factor that expresses how much we want (another hyperparameter)

J(w⃗) = Joriginal(w⃗) +
λ

n ||w||
2
2 with n for the batch size
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Regularization

L2-Regularization

▶ What does it do?

▶ If weights w⃗ are large: Loss is increased more
▶ Large weights are only considered if the increased loss is “worth it”, i.e., if it is

counterbalanced by a real error reduction
▶ Small weights are preferred
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Regularization

Implementation

▶ In Keras, most layers support additional arguments for regularization:
▶ kernel_regularizer, bias_regularizer, activity_regularizer

▶ Applied to weights, constant term, neuron output (= result of activation function)
▶ Docs: https://keras.io/api/layers/regularizers/

▶ Argument value: Regularization function with parameter(s)
▶ Layer-specific

1 ffnn.add(layers.Dense(5,
2 activation="sigmoid",
3 activity_regularizer=regularizers.l2(0.2)))
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Section 3

Dropout



Dropout

Dropout

▶ Regularization: Numerically combatting overfitting
▶ Dropout: Structurally combatting overfitting Hinton et al. (2012)

▶ A new hyperparameter π = [0; 1]
▶ In each epoch, every weight is set to zero with a probability of π

[Dropout] prevents complex co-adaptations in which a feature detector is only helpful
in the context of several other specific feature detectors. Instead, each neuron learns
to detect a feature that is generally helpful for producing the correct answer given the
combinatorially large variety of internal contexts in which it must operate.

Hinton et al. (2012, 1)
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Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized
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Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 0
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Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 1
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Dropout

Dropout

Example

Figure: Dropout π = 0.5, visualized, Epoch 2
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Dropout

Dropout
Implementation

▶ Why?
▶ Dropout forces the network to learn redundancies
▶ Use in the first layers, where features are detected

▶ Implementation
▶ In Keras, dropout is realized as additional layer
▶ Applies to the layer before the dropout layer

1 model.add(layers.Dense(20)) # edges are dropped here
2 model.add(layers.Dropout(0.5)) # dropout layer (not a real layer though)
3 model.add(layers.Dense(10)) # no edges dropped
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Section 4

Sequence Labeling



Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32



Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32

Nils Reiter

Nils Reiter

Nils Reiter



Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies

▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32



Sequence Labeling

Motivation

▶ Language works sequentially
▶ Word meaning depends on context

▶ Feedforward neural networks
▶ One instance at a time
▶ E.g., one sentence with four tokens  positive/negative

▶ Conceptually not adequate for natural language
▶ Length of influencing context varies
▶ Recurrent neural networks are one solution to this problem

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 20 / 32



Sequence Labeling

Sequence Labeling

▶ So far: Classification
▶ Sequence labeling

▶ Special case of classification
▶ Instances are organized sequentially and not independent of each other

▶ I.e.: The prediction of a class for one item influences the next

Example (Part of speech tagging)
▶ “the dog barks” → “DET NN VBZ”
▶ Predicting “DET VBZ NN” is extremely unlikely, because verbs usually don’t follow

determiners
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Sequence Labeling

Towards Recurrent Neural Networks

Feature values of
instance x⃗ = (x1, x2)

Output for instance x⃗

b31

b21

b22

b23

x1

x2

y

Figure: A feedforward neural network with 1 hidden layer (same picture as before)
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Sequence Labeling

Towards Recurrent Neural Networks

To work with sequences, we need to include the sequence into the model

Notation
X = (X⃗1, X⃗2, . . . ) The input data set containing a sequence of instances

(e.g., a sequence of words)
X⃗i = (x1, x2, . . . ) One instance with feature values

(e.g., embedding dimensions)
Yi Output for instance Xi
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Sequence Labeling

Recurrent Neural Networks
Example

y

x1

x2

Xi
b1

b2

b3
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Sequence Labeling

Recurrent Neural Networks
Example

se
qu

en
ce

y

x1

x2

Xi b1

b2

b3
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Sequence Labeling

Recurrent Neural Networks
▶ FFNN, CNN: Weights between neurons
▶ RNN: Additional weights for recurrent connections

Input shape
▶ Before: Network gets at one object at a time, potentially with multiple features
▶ Now: Network gets sequence of objects at a time, each one potentially with multiple

features
▶ RNN layers need 2D input:

▶ Length of input sequences (if needed, padded)
▶ Number of features (dimensions)

▶ (this is where embeddings would go)
▶ For training, we need multiple sequences, making the training data 3D
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Sequence Labeling

Demo

▶ Simple task: Learn to count distances
▶ Given a sequence of 1s and 0s, predict a 1 two steps after an input-1
▶ E.g.: “010010001” becomes “000100100”
▶ Model has to learn to count the distance
▶ Training data can easily be generated

demo
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Sequence Labeling

Implementation in keras

▶ tf.keras.layers.SimpleRNN
▶ Documentation: https://keras.io/api/layers/recurrent_layers/simple_rnn/

Selected parameters:
▶ recurrent_dropout=0.0 Dropout for recurrent links
▶ return_sequences=False Wether to continue the network with the entire sequence or just the

last element

1 model.add(layers.SimpleRNN(...))
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Sequence Labeling

BIO Scheme
▶ POS-Tagging is easy, because structurally simple: Each token is assigned to one class
▶ Named entity recognition (and many other tasks) is complicated

▶ Not every token is part of a named entity (NE)
▶ Many named entities span multiple tokens
▶ We distinguish NEs based on the ontological type of the referent

▶ PERson, ORGanization, LOCation, …

▶ BIO scheme
▶ How to represent NE annotations token-wise
▶ Each token gets a label

▶ B: Beginning of a NE
▶ I: Inside of a NE
▶ O: Outside of a NE (the majority of tokens)

▶ Why B: Marking the beginning allows to recognize multiple multi-word NEs in direct
sequence
▶ “…hat Peter Paulus Maria Müller geküsst” → “O B-PER I-PER B-PER I-PER O”
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Sequence Labeling

Directions

▶ In a regular RNN, the sequence is processed in one direction
▶ Simple extension: two recurrent layers for both directions

1 model.add(layers.Bidirectional(layers.SimpleRNN(...)))
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Section 5

Summary



Summary

Summary

Overfitting
▶ Bla
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