Recap: Overfitting and Recurrent Neural Networks

» Overfitting
» The model did not generalize well
» Not purely technical problem
» DL answers: regularization, dropout
» Recurrent Neural Networks
» Basic neural networks: Classify one item at a time
> RNN

> Additional connection along the sequence
» Information can be passed from one sequence element to the next
» One dimension more, because training instance is a sequence
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Introduction

» (Recurrent) neural networks provide building blocks
» Powerful machine learning, usable for many different tasks
» RNN/Bi-LSTM have taken over NLP landscape — 2015-2018
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Introduction

» (Recurrent) neural networks provide building blocks
» Powerful machine learning, usable for many different tasks
» RNN/Bi-LSTM have taken over NLP landscape — 2015-2018

Current State of the Art: Transformer architecture

» Encoder-Decoder-Network Sutskever et al. (2014)
> Attention layer Vaswani et al. (2017)
» New training paradigm(s)
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Encoder-Decoder-Networks

Introduction

» Each X value leads to a Y value

@ . @ > Network has no way to skip a sequence
e . e element
> Many real world sequence labeling tasks
e . e are n-to-m-tasks
» n elements in one sequence are
associated with m element in the other

Sequence

Figure: Neural network with a
recurrent layer

Reiter VL Sprachliche Informationsverarbeitung WS 23/24

5/28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture

» Network has two parts:
» Encoder maps from input data to an internal representation
» Internal representation optionally processed by a regular dense layer
» Decoder maps from internal representation to the output
» Internal representation
» Use the output of last recurrent neuron
» Or internal state of last recurrent cell
» Some vector, not interpretable
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras

» Encoder
» Regular input layer
» Recurrent layer with return_sequences=False

> Because we don't want a sequence as output, but just the output of the last cell

» Decoder
» Every output sequence element gets the internal representation as input

» Thus, it needs to be repeated with the RepeatVector () layer
» This is just copying the vector

» Recurrent Iayer with return_sequences=True
» Because now, we want the sequence
» Qutput layer as before
» With one-hot-encoding for multi-class problems
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Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras
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Listing 1: The Code

model = models.Sequential ()

# Encoder

model.add(layers.Input (shape=(INPUT_LENGTH,)))
model.add(layers.Embedding (input_dim=number_of_symbols, output_dim=64,))
model.add(layers.LSTM(64, return_sequences=False))

# Copy the internal representation (optional)
model.add(layers.RepeatVector (OUTPUT_LENGTH))

# Decoder

model.add(layers.LSTM(32, return_sequences=True))
model.add(layers.Dense (number_of_symbols*2, activation='softmax'))
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Attention

woman is throwing a frisbee in a park. A dog is standing on a hardwood floor. A stop sign is on a road with a
- — mountain in the background.

Figure: Examples of attending to the correct object (Xu et al., 2015)
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Attention
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Figure: Attention paid by a neural machine translation network (Bahdanau et al., 2015)
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Attention

Introduction

» A mechanism to allow the network to learn what to focus on
P Idea: Not all parts of the input are equally important

» MT: “la zone économique européenne” — “the European Economic Area”, irrespective of
context
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Attention

Introduction

» A mechanism to allow the network to learn what to focus on
P Idea: Not all parts of the input are equally important

» MT: “la zone économique européenne” — “the European Economic Area”, irrespective of
context

» Mirrows human reading/translating activities

» Developed for machine translation, then applied to other tasks
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Attention

From Encoder-Decoder to Attention
Encoder Decoder
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Attention

From Encoder-Decoder to Attention

Encoder Attention Decoder
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Transformer Architecture

Introduction

» BERT is the first succesful model that implements the transformer architecture
» BERT has outperformed the state of the art in many NLP tasks
» Breakthrough in NLP
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Transformer Architecture

Introduction

» BERT is the first succesful model that implements the transformer architecture
» BERT has outperformed the state of the art in many NLP tasks
» Breakthrough in NLP

> General idea Devlin et al. (2019)

> Encoder-Attention-Decoder architecture (= transformer)
> Process whole input at once, no sequence labeling! (max. 512 tokens, = bidirectional)
» Pre-training and fine-tuning on different tasks
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Transformer Architecture

Pre-Training and Fine-Tuning

» BERT models are trained on large data sets
» Training one from scratch requires significant resources (time/money)

» Pre-trained models are shared freely
» Recipe: Take a pre-trained model and fine-tune it on your task
» Pre-trained model contains an abstract language representation
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Transformer Architecture

Pre-Training and Fine-Tuning

BERT models are trained on large data sets

Pre-trained models are shared freely
Recipe: Take a pre-trained model and fine-tune it on your task
» Pre-trained model contains an abstract language representation

>
» Training one from scratch requires significant resources (time/money)
| 2
>

» Fine-tuning
» Any language-related task!
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Transformer Architecture

BERT Training Tasks

Masked Language Modeling (MLM)
> Sentence-wise
> 15% of the tokens are “masked” by a special token
P> Model predicts these, having access to all other tokens
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Transformer Architecture

BERT Training Tasks

Masked Language Modeling (MLM)

> Sentence-wise

> 15% of the tokens are “masked” by a special token

P> Model predicts these, having access to all other tokens
Next sentence prediction (NSP)

» Two (masked) sentences are concatenated

> Model has to predict wether second sentence follows on the first or not
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Hugging Face



Practical Things and Future Trends

Introduction

» An Al company that provides
» A Python library for transformer models
» Since 2.0 compatible with tensorflow/keras and PyTorch

> A platform to share BERT models (e.g., for different languages) and/or data sets
» Some paid services
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Practical Things and Future Trends

Introduction

» An Al company that provides
» A Python library for transformer models
» Since 2.0 compatible with tensorflow/keras and PyTorch

> A platform to share BERT models (e.g., for different languages) and/or data sets
» Some paid services

Installation

1 pip install transformers
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Practical Things and Future Trends

Code

© O NG W N

=
N = O

import tensorflow as tf
from transformers import TFAutoModelForSequenceClassification

# Load model as keras model
model = TFAutoModelForSequenceClassification

.from_pretrained("bert-base-cased", num_labels=2)

# do the usual keras stuff
model.compile(...)

# fine-tuning
model.fit(...)

https://huggingface.co/transformers/training.html
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Practical Things and Future Trends

Using Large Language Models

» Extracting contextual embeddings
> sl2-get-bert-features.py
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Using Large Language Models

» Extracting contextual embeddings
> sl2-get-bert-features.py

» Predicting the next token / filling in blanks
» s12-unmasker.py
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Practical Things and Future Trends

Using Large Language Models

» Extracting contextual embeddings
> sl2-get-bert-features.py
» Predicting the next token / filling in blanks
» s12-unmasker.py
» Fine-Tuning to a specific task (using annotated data)

P s12-fine-tune-text-classification.py
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Practical Things and Future Trends

Using Large Language Models

» Extracting contextual embeddings
> sl2-get-bert-features.py

» Predicting the next token / filling in blanks
» s12-unmasker.py

» Fine-Tuning to a specific task (using annotated data)
P s12-fine-tune-text-classification.py

» Zero-Shot classification (Classify without fine-tuning!)

P s12-zero-shot-classification. Py
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Practical Things and Future Trends

Using Large Language Models

» Extracting contextual embeddings
> sl2-get-bert-features.py

» Predicting the next token / filling in blanks
» s12-unmasker.py

» Fine-Tuning to a specific task (using annotated data)
P s12-fine-tune-text-classification.py

» Zero-Shot classification (Classify without fine-tuning!)
> s12-zero-shot-classification.py

» Few-Shot classification (= “in-context-learning™)
» The new paradigm?
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Practical Things and Future Trends

The Future

» LLMs will not go away, are expensive (money/power/maintenance) and powerful
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Practical Things and Future Trends

The Future

» LLMs will not go away, are expensive (money/power/maintenance) and powerful
» Open tasks
» Proper/rigorous evaluation
» Humans are good at over-interpreting model output

» Control: Effectively preventing LLMs from generating bullshit or toxic language
» Future LLMs: How to gather untainted training data
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Practical Things and Future Trends

The Future

» LLMs will not go away, are expensive (money/power/maintenance) and powerful
» Open tasks
» Proper/rigorous evaluation
» Humans are good at over-interpreting model output

» Control: Effectively preventing LLMs from generating bullshit or toxic language
» Future LLMs: How to gather untainted training data

» How to (properly) use LLMs in scientific areas is still somewhat unclear

> It's a difference wether a model generates language (with all its ambiguity) or category
assignments
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Summary

Summary

» Motivation: Sequence to sequence tasks (like machine translation)
Encoder-Decoder architecture

» Encoder reads in the input, generates internal representation

» Decoder produces output, consuming internal representation
Attention

» Developed for image classification, then transfered to machine translation

» Let the model learn the relevant input tokens for each output token
Transformer architecture

» Breakthrough in natural language processing

» Pre-training vs. fine-tuning

» Huggingface: Platform to make such models easy to use

» Good documentation on transformers:
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