
Recap: Overfitting and Recurrent Neural Networks

▶ Overfitting
▶ The model did not generalize well
▶ Not purely technical problem
▶ DL answers: regularization, dropout

▶ Recurrent Neural Networks
▶ Basic neural networks: Classify one item at a time
▶ RNN

▶ Additional connection along the sequence
▶ Information can be passed from one sequence element to the next
▶ One dimension more, because training instance is a sequence

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 1 / 28



Machine Learning: Transformer Models, BERT, The Future?
VL Sprachliche Informationsverarbeitung

Nils Reiter
nils.reiter@uni-koeln.de

January 18, 2024
Winter term 2023/24



Introduction

▶ (Recurrent) neural networks provide building blocks
▶ Powerful machine learning, usable for many different tasks
▶ RNN/Bi-LSTM have taken over NLP landscape – 2015–2018

Current State of the Art: Transformer architecture
▶ Encoder-Decoder-Network Sutskever et al. (2014)
▶ Attention layer Vaswani et al. (2017)
▶ New training paradigm(s)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 3 / 28



Introduction

▶ (Recurrent) neural networks provide building blocks
▶ Powerful machine learning, usable for many different tasks
▶ RNN/Bi-LSTM have taken over NLP landscape – 2015–2018

Current State of the Art: Transformer architecture
▶ Encoder-Decoder-Network Sutskever et al. (2014)
▶ Attention layer Vaswani et al. (2017)
▶ New training paradigm(s)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 3 / 28



Section 1

Encoder-Decoder-Networks



Encoder-Decoder-Networks

Introduction
Se

qu
en

ce

X1 Y1

X2 Y2

X3 Y3

Figure: Neural network with a
recurrent layer

▶ Each X value leads to a Y value
▶ Network has no way to skip a sequence

element
▶ Many real world sequence labeling tasks

are n-to-m-tasks
▶ n elements in one sequence are

associated with m element in the other

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 5 / 28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture

▶ Network has two parts:
▶ Encoder maps from input data to an internal representation
▶ Internal representation optionally processed by a regular dense layer
▶ Decoder maps from internal representation to the output

▶ Internal representation
▶ Use the output of last recurrent neuron

▶ Or internal state of last recurrent cell
▶ Some vector, not interpretable

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 6 / 28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture
Encoder

DecoderIn
pu

ts
eq

ue
nc

e

X1

X2

X3 Y0

Y1

Y2

Y3

O
utputsequence

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 7 / 28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture
Encoder

DecoderIn
pu

ts
eq

ue
nc

e

X1

X2

X3 Y0

Y1

Y2

Y3

O
utputsequence

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 7 / 28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras

▶ Encoder
▶ Regular input layer
▶ Recurrent layer with return_sequences=False

▶ Because we don’t want a sequence as output, but just the output of the last cell
▶ Decoder

▶ Every output sequence element gets the internal representation as input
▶ Thus, it needs to be repeated with the RepeatVector() layer
▶ This is just copying the vector

▶ Recurrent layer with return_sequences=True
▶ Because now, we want the sequence

▶ Output layer as before
▶ With one-hot-encoding for multi-class problems

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 8 / 28



Encoder-Decoder-Networks

Encoder-Decoder-Architecture in Keras

Listing 1: The Code
1 model = models.Sequential()
2 # Encoder
3 model.add(layers.Input(shape=(INPUT_LENGTH ,)))
4 model.add(layers.Embedding(input_dim=number_of_symbols, output_dim=64,))
5 model.add(layers.LSTM(64, return_sequences=False))
6
7 # Copy the internal representation (optional)
8 model.add(layers.RepeatVector(OUTPUT_LENGTH))
9

10 # Decoder
11 model.add(layers.LSTM(32, return_sequences=True))
12 model.add(layers.Dense(number_of_symbols*2, activation='softmax'))

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 9 / 28



Section 2

Attention



Attention

Figure: Examples of attending to the correct object (Xu et al., 2015)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 11 / 28



Attention

Figure: Attention paid by a neural machine translation network (Bahdanau et al., 2015)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 12 / 28



Attention

Introduction

▶ A mechanism to allow the network to learn what to focus on
▶ Idea: Not all parts of the input are equally important

▶ MT: “la zone économique européenne” → “the European Economic Area”, irrespective of
context

▶ Mirrows human reading/translating activities
▶ Developed for machine translation, then applied to other tasks

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 13 / 28



Attention

Introduction

▶ A mechanism to allow the network to learn what to focus on
▶ Idea: Not all parts of the input are equally important

▶ MT: “la zone économique européenne” → “the European Economic Area”, irrespective of
context

▶ Mirrows human reading/translating activities
▶ Developed for machine translation, then applied to other tasks

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 13 / 28



Attention

From Encoder-Decoder to Attention
Encoder Decoder

In
pu

ts
eq

ue
nc

e
X1

X2

X3

Y0

Y1

Y2

Y3

O
utputsequence

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 14 / 28



Attention

From Encoder-Decoder to Attention
Encoder DecoderAttention
In

pu
ts

eq
ue

nc
e

X1

X2

X3

Y0+

Y1+

Y2+

Y3+

O
utputsequence

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 15 / 28



Section 3

Transformer Architecture



Transformer Architecture

Introduction

▶ BERT is the first succesful model that implements the transformer architecture
▶ BERT has outperformed the state of the art in many NLP tasks
▶ Breakthrough in NLP

▶ General idea Devlin et al. (2019)
▶ Encoder-Attention-Decoder architecture (= transformer)
▶ Process whole input at once, no sequence labeling! (max. 512 tokens, = bidirectional)
▶ Pre-training and fine-tuning on different tasks

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 28



Transformer Architecture

Introduction

▶ BERT is the first succesful model that implements the transformer architecture
▶ BERT has outperformed the state of the art in many NLP tasks
▶ Breakthrough in NLP
▶ General idea Devlin et al. (2019)

▶ Encoder-Attention-Decoder architecture (= transformer)
▶ Process whole input at once, no sequence labeling! (max. 512 tokens, = bidirectional)
▶ Pre-training and fine-tuning on different tasks

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 17 / 28



Transformer Architecture

Pre-Training and Fine-Tuning

▶ BERT models are trained on large data sets
▶ Training one from scratch requires significant resources (time/money)
▶ Pre-trained models are shared freely
▶ Recipe: Take a pre-trained model and fine-tune it on your task

▶ Pre-trained model contains an abstract language representation

▶ Fine-tuning
▶ Any language-related task!

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 18 / 28



Transformer Architecture

Pre-Training and Fine-Tuning

▶ BERT models are trained on large data sets
▶ Training one from scratch requires significant resources (time/money)
▶ Pre-trained models are shared freely
▶ Recipe: Take a pre-trained model and fine-tune it on your task

▶ Pre-trained model contains an abstract language representation
▶ Fine-tuning

▶ Any language-related task!

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 18 / 28



Transformer Architecture

BERT Training Tasks

Masked Language Modeling (MLM)
▶ Sentence-wise
▶ 15% of the tokens are “masked” by a special token
▶ Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
▶ Two (masked) sentences are concatenated
▶ Model has to predict wether second sentence follows on the first or not

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 19 / 28



Transformer Architecture

BERT Training Tasks

Masked Language Modeling (MLM)
▶ Sentence-wise
▶ 15% of the tokens are “masked” by a special token
▶ Model predicts these, having access to all other tokens

Next sentence prediction (NSP)
▶ Two (masked) sentences are concatenated
▶ Model has to predict wether second sentence follows on the first or not

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 19 / 28



Section 4

Practical Things and Future Trends



Hugging Face



Practical Things and Future Trends

Introduction

▶ An AI company that provides
▶ A Python library for transformer models

▶ Since 2.0 compatible with tensorflow/keras and PyTorch
▶ A platform to share BERT models (e.g., for different languages) and/or data sets
▶ Some paid services

Installation
1 pip install transformers

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 22 / 28



Practical Things and Future Trends

Introduction

▶ An AI company that provides
▶ A Python library for transformer models

▶ Since 2.0 compatible with tensorflow/keras and PyTorch
▶ A platform to share BERT models (e.g., for different languages) and/or data sets
▶ Some paid services

Installation
1 pip install transformers

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 22 / 28



Practical Things and Future Trends

Code

1 import tensorflow as tf
2 from transformers import TFAutoModelForSequenceClassification
3
4 # Load model as keras model
5 model = TFAutoModelForSequenceClassification
6 .from_pretrained("bert-base-cased", num_labels=2)
7
8 # do the usual keras stuff
9 model.compile(...)

10
11 # fine-tuning
12 model.fit(...)

https://huggingface.co/transformers/training.html

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 23 / 28

https://huggingface.co/transformers/training.html




Practical Things and Future Trends

Using Large Language Models

▶ Extracting contextual embeddings
▶ s12-get-bert-features.py

▶ Predicting the next token / filling in blanks
▶ s12-unmasker.py

▶ Fine-Tuning to a specific task (using annotated data)
▶ s12-fine-tune-text-classification.py

▶ Zero-Shot classification (Classify without fine-tuning!)
▶ s12-zero-shot-classification.py

▶ Few-Shot classification (= “in-context-learning”)
▶ The new paradigm? Brown et al. (2020)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 28



Practical Things and Future Trends

Using Large Language Models

▶ Extracting contextual embeddings
▶ s12-get-bert-features.py

▶ Predicting the next token / filling in blanks
▶ s12-unmasker.py

▶ Fine-Tuning to a specific task (using annotated data)
▶ s12-fine-tune-text-classification.py

▶ Zero-Shot classification (Classify without fine-tuning!)
▶ s12-zero-shot-classification.py

▶ Few-Shot classification (= “in-context-learning”)
▶ The new paradigm? Brown et al. (2020)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 28



Practical Things and Future Trends

Using Large Language Models

▶ Extracting contextual embeddings
▶ s12-get-bert-features.py

▶ Predicting the next token / filling in blanks
▶ s12-unmasker.py

▶ Fine-Tuning to a specific task (using annotated data)
▶ s12-fine-tune-text-classification.py

▶ Zero-Shot classification (Classify without fine-tuning!)
▶ s12-zero-shot-classification.py

▶ Few-Shot classification (= “in-context-learning”)
▶ The new paradigm? Brown et al. (2020)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 28



Practical Things and Future Trends

Using Large Language Models

▶ Extracting contextual embeddings
▶ s12-get-bert-features.py

▶ Predicting the next token / filling in blanks
▶ s12-unmasker.py

▶ Fine-Tuning to a specific task (using annotated data)
▶ s12-fine-tune-text-classification.py

▶ Zero-Shot classification (Classify without fine-tuning!)
▶ s12-zero-shot-classification.py

▶ Few-Shot classification (= “in-context-learning”)
▶ The new paradigm? Brown et al. (2020)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 28



Practical Things and Future Trends

Using Large Language Models

▶ Extracting contextual embeddings
▶ s12-get-bert-features.py

▶ Predicting the next token / filling in blanks
▶ s12-unmasker.py

▶ Fine-Tuning to a specific task (using annotated data)
▶ s12-fine-tune-text-classification.py

▶ Zero-Shot classification (Classify without fine-tuning!)
▶ s12-zero-shot-classification.py

▶ Few-Shot classification (= “in-context-learning”)
▶ The new paradigm? Brown et al. (2020)

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 25 / 28



Practical Things and Future Trends

The Future

▶ LLMs will not go away, are expensive (money/power/maintenance) and powerful

▶ Open tasks
▶ Proper/rigorous evaluation

▶ Humans are good at over-interpreting model output
▶ Control: Effectively preventing LLMs from generating bullshit or toxic language
▶ Future LLMs: How to gather untainted training data

▶ How to (properly) use LLMs in scientific areas is still somewhat unclear
▶ It’s a difference wether a model generates language (with all its ambiguity) or category

assignments

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 26 / 28



Practical Things and Future Trends

The Future

▶ LLMs will not go away, are expensive (money/power/maintenance) and powerful
▶ Open tasks

▶ Proper/rigorous evaluation
▶ Humans are good at over-interpreting model output

▶ Control: Effectively preventing LLMs from generating bullshit or toxic language
▶ Future LLMs: How to gather untainted training data

▶ How to (properly) use LLMs in scientific areas is still somewhat unclear
▶ It’s a difference wether a model generates language (with all its ambiguity) or category

assignments

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 26 / 28



Practical Things and Future Trends

The Future

▶ LLMs will not go away, are expensive (money/power/maintenance) and powerful
▶ Open tasks

▶ Proper/rigorous evaluation
▶ Humans are good at over-interpreting model output

▶ Control: Effectively preventing LLMs from generating bullshit or toxic language
▶ Future LLMs: How to gather untainted training data

▶ How to (properly) use LLMs in scientific areas is still somewhat unclear
▶ It’s a difference wether a model generates language (with all its ambiguity) or category

assignments

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 26 / 28



Section 5

Summary



Summary

Summary
▶ Motivation: Sequence to sequence tasks (like machine translation)

Encoder-Decoder architecture
▶ Encoder reads in the input, generates internal representation
▶ Decoder produces output, consuming internal representation

Attention
▶ Developed for image classification, then transfered to machine translation
▶ Let the model learn the relevant input tokens for each output token

Transformer architecture
▶ Breakthrough in natural language processing
▶ Pre-training vs. fine-tuning
▶ Huggingface: Platform to make such models easy to use

▶ Good documentation on transformers: huggingface.co/docs/transformers

Reiter VL Sprachliche Informationsverarbeitung WS 23/24 28 / 28

https://huggingface.co/docs/transformers/index

	Encoder-Decoder-Networks
	Attention
	Transformer Architecture
	Practical Things and Future Trends
	Summary

