
Recap

▶ Functions: Named code blocks
▶ Can be called repeatedly
▶ Can have arguments that change their behaviour

▶ Arguments are accessible as variables within the body of the function
▶ Data types

▶ Variables, literal values etc. have data types
▶ Data type controls

▶ How much memory is consumed
▶ What can we do with the thing

▶ Distinction in primitive and non-primitive types
▶ For the moment: Primitive types

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 1 / 23

Primitive Data Types
Keyword Full name Values

boolean Binary value true , false

byte 1 Byte (= 8 bit) −128 to 127

short short integer (16 bit) −32 768 to 32 767

int Integer (32 bit) −2 147 483 648 to 2 147 483 647

long long integer (64 bit) −9 223 372 036 854 775 808 to 9 223 372 036 854 775 807

char Character in UTF-16 '\u0000' to '\uffff' (65536 = 216 symbols)

float Decimal numbers (32 bit) ±1.4× 10−45 to ±3.4× 1038

double Decimal numbers (64 bit) ±4.9× 10−324 to ±1.8× 10308

Table: All primitive data types in Java

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 2 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Session 4: Casting, Conditionals, Comments/Javadoc
Softwaretechnologie: Java 1

Nils Reiter
nils.reiter@uni-koeln.de

November 8, 2023

Section 1

Exercise 3

Exercise 3

Exercise 03: isOdd(int)

1 public class Exercise03 {
2
3 ^^Ipublic static void main(String[] args) {
4 ^^I^^ISystem.out.println(isOdd(3)); // true
5 ^^I^^ISystem.out.println(isOdd(1)); // true
6 ^^I^^ISystem.out.println(isOdd(457483841)); // true
7 ^^I^^ISystem.out.println(isOdd(12)); // false
8 ^^I}
9

10 ^^Istatic boolean isOdd(int number) {
11 ^^I^^Ireturn number % 2 == 1; // shortest version, operator precedence relevant!
12 ^^I}
13 ^^I
14 }

Operator precedence

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 6 / 23

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/operators.html

Section 2

Casting

Casting

Casting

▶ Converting from one type into another
▶ Explicit casting: Target type in parentheses

1 char myChar = 'a';
2 int myInteger = (int) myChar;
3 double d = (double) myInteger;

▶ Not all types can be cast into all other types
▶ E.g., no casting from int to boolean

▶ Cast operator is an operator, i.e.: Can be used in expressions
▶ boolean b = (double) ((int)'a'+ 5) / 17 >= 5.0

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 8 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Casting

Implicit Casting

▶ If needed and if possible without information loss
▶ double can represent more numbers than float

▶ float to double : No information loss
▶ double to float : Potential loss

▶ Explicit casting possible, use at your own risk
▶ long can represent more numbers than short

▶ short to long : No information loss
▶ long to short : Potential loss

▶ Explicit casting possible, use at your own risk

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 9 / 23

Section 3

Conditionals

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed

▶ Multiple forms:
if (EXPRESSION) STATEMENT

if (EXPRESSION) STATEMENT else STATEMENT

▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 11 / 23

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed
▶ Multiple forms:

if (EXPRESSION) STATEMENT

if (EXPRESSION) STATEMENT else STATEMENT

▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 11 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Conditionals

Conditionals

▶ So far: All statements are executed in sequence
▶ Conditionals allow specifying a condition: If it is fulfilled, a statement is executed
▶ Multiple forms:

if (EXPRESSION) STATEMENT

if (EXPRESSION) STATEMENT else STATEMENT

▶ EXPRESSION must evaluate to a boolean value

▶ The if -statement is a statement, therefore:
if (EXP1) STATEMENT else if (EXP2) STATEMENT else STATEMENT is also possible

▶ Remember: code blocks { ... } are also statements

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 11 / 23

Nils Reiter

Nils Reiter

Nils Reiter

demo

Conditionals

Conditional Expression

▶ The if-statement is a statement
▶ Sometimes, it’s useful to make such a distinction in the form of an expression
▶ All other operators are unitary or binary (i.e.: take one or two values)
▶ Ternary operator has three parts: EXP1 ? EXP2 : EXP3

▶ EXP1 must evaluate to a boolean value, EXP2 and EXP3 must evaluate to the same type

▶ short daysInYear = isLeapYear() ? 366 : 365;

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 13 / 23

Conditionals

Conditional Expression

▶ The if-statement is a statement
▶ Sometimes, it’s useful to make such a distinction in the form of an expression
▶ All other operators are unitary or binary (i.e.: take one or two values)
▶ Ternary operator has three parts: EXP1 ? EXP2 : EXP3

▶ EXP1 must evaluate to a boolean value, EXP2 and EXP3 must evaluate to the same type
▶ short daysInYear = isLeapYear() ? 366 : 365;

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 13 / 23

Conditionals

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement

1 switch (EXPRESSION) {
2 case CONSTANT: STATEMENT; break;
3 case CONSTANT2, CONSTANT3: STATEMENT; break;
4 default: STATEMENT
5 }

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 14 / 23

Conditionals

Switch-Statement

▶ Complex and embedded if-statements quickly become unreadable
▶ Alternative, if all if-statements compare against the same variable: switch -statement

1 switch (EXPRESSION) {
2 case CONSTANT: STATEMENT; break;
3 case CONSTANT2, CONSTANT3: STATEMENT; break;
4 default: STATEMENT
5 }

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 14 / 23

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

Nils Reiter

demo

Conditionals

Switch-Statement
Example

1 static short daysInMonth(byte month) {
2 switch(month) {
3 case 2: return 28; // no break needed, because of return
4 case 4: // fall through to case 11
5 case 6:
6 case 9:
7 case 11: return 30;
8 default: return 31;
9 }

10 }

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 16 / 23

Section 4

Commenting

Commenting

Comments

▶ Ignored by the compiler
▶ Information for us humans

Two types
1 // This comment ends when the line ends
2
3 /* This comments ends with */
4
5 /*
6 We can include text that spans
7 multiple lines
8 */

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 18 / 23

Commenting

Comments

▶ Ignored by the compiler
▶ Information for us humans

Two types
1 // This comment ends when the line ends
2
3 /* This comments ends with */
4
5 /*
6 We can include text that spans
7 multiple lines
8 */

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 18 / 23

Commenting

Comments

Example
1 public class Example {
2
3 public static void main(String[] args) {
4 // stores how much users want to withdraw
5 int amount = 1500;
6
7 /* the next lines are supposed to calculate
8 the third root of amount, I took the idea from
9 http://www...

10 */
11 int temp = 3;
12 amount = amount / temp;
13 // TODO: Implement me!
14 }
15 }

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 19 / 23

Commenting

Commenting

▶ No fixed rules what to comment

▶ Helpful: Your intentions, complex expressions, non-trivial functions
▶ Avoid commenting trivial things
▶ Keep comments up to date
▶ Don’t make ASCII art in comments

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 20 / 23

Commenting

Commenting

▶ No fixed rules what to comment
▶ Helpful: Your intentions, complex expressions, non-trivial functions
▶ Avoid commenting trivial things
▶ Keep comments up to date
▶ Don’t make ASCII art in comments

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 20 / 23

Commenting

Javadoc

▶ Comments, so far: /* ... */ and // ...

▶ Implementation comments about your code

▶ New comment type: /** ... */

▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 21 / 23

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)

Commenting

Javadoc

▶ Comments, so far: /* ... */ and // ...

▶ Implementation comments about your code
▶ New comment type: /** ... */

▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 21 / 23

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)

Commenting

Javadoc

▶ Comments, so far: /* ... */ and // ...

▶ Implementation comments about your code
▶ New comment type: /** ... */

▶ API comment for other programmers about a function/class/method
▶ Not about specific lines, but the entire function

▶ API comments can be extracted to an HTML page
▶ All Java classes/functions/methods have such a documentation Javadoc

▶ Javadoc: Integer.valueOf()

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 21 / 23

https://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#valueOf(java.lang.String)

Commenting

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse

▶ Eclipse can generate Javadoc HTML files
▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 22 / 23

Commenting

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse

▶ Eclipse can generate Javadoc HTML files
▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 22 / 23

Commenting

Javadoc
Eclipse

▶ Javadoc comments directly displayed by Eclipse
▶ Eclipse can generate Javadoc HTML files

▶ Menu > Project > Generate Javadoc …

Reiter Session 4: Casting, Conditionals, Comments/Javadoc 22 / 23

Section 5

Exercise

	Exercise 3
	Casting
	Conditionals
	Commenting
	Exercise

